In vivo Doppler shift measurements using multimode fiber-optic catheters.
暂无分享,去创建一个
A new fiber-optic catheter for in vivo blood-flow measurements has been developed. The catheter is designed to measure blood flow in both the forward (toward the catheter tip) and reverse (away from the catheter tip) flow directions. It consists of two multimode optical fibers with core diameter of 50 microns and cladding diameter of 125 microns. One fiber transmits the laser beam into blood and the other receives the backscattered light from the erythrocytes within the probe volume. In the flow experiment, it was found that the flow within the boundary layer is indeed laminar and, hence, the relationship between the Doppler shift frequencies and the flow velocities is linear, thereby making the linear calibration possible for predicting the free stream flow velocity. Plots of the maximum shift frequency (frequency at which the Doppler spectrum disappeared into the noise spectrum) against the flow velocities are found to be more linear in both the forward and reverse flow directions than that of the dominant shift frequency (frequency with the highest amplitude). These results were reaffirmed by the numerical flow simulation along the catheter side wall.
[1] M. Stern,et al. Laser Doppler velocimetry in blood and multiply scattering fluids: theory. , 1985, Applied optics.
[2] D. Bergel. Geigy Scientific Tables , 1991 .
[3] S. Tjin,et al. Evaluation of the two-fiber laser Doppler anemometer for in vivo blood flow measurements: experimental and flow simulation results , 1995 .
[4] T Tanaka,et al. Measurement of the Velocity of Blood Flow (in vivo) Using a Fiber Optic Catheter and Optical Mixing Spectroscopy. , 1975, Applied optics.