Algebraic Canonicity in Non-Classical Logics
暂无分享,去创建一个
[1] Johan van Benthem,et al. Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.
[2] Mai Gehrke,et al. Bounded distributive lattice expansions , 2004 .
[3] Mai Gehrke,et al. MONOTONE BOUDED DISTRIBUTIVE LATTICE EXPANSIONS , 2000 .
[4] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[5] K. Fine. Some Connections Between Elementary and Modal Logic , 1975 .
[6] Frank Wolter,et al. Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .
[7] Ian M. Hodkinson,et al. Sahlqvist theorem for modal fixed point logic , 2012, Theor. Comput. Sci..
[8] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[9] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[10] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[11] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[12] Bjarni Jónsson,et al. On the canonicity of Sahlqvist identities , 1994, Stud Logica.
[13] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[14] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[15] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[16] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[17] Silvio Ghilardi,et al. Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..
[18] Johan van Benthem,et al. Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.
[19] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.
[20] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA , 2010, J. Appl. Log..
[21] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[22] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[23] Tomoyuki Suzuki,et al. CANONICITY RESULTS OF SUBSTRUCTURAL AND LATTICE-BASED LOGICS , 2010, The Review of Symbolic Logic.
[24] Mai Gehrke,et al. A View of Canonical Extension , 2009, TbiLLC.
[25] Samuel Jacob van Gool,et al. METHODS FOR CANONICITY , 2009 .
[26] Yde Venema,et al. Canonical Pseudo-Correspondence , 1998, Advances in Modal Logic.