Algebraic Canonicity in Non-Classical Logics

This thesis is a study of the notion of canonicity (as is understood e.g. in modal logic) from an algebraic viewpoint. The main conceptual contribution of this thesis is a better understanding of the connection between the Jonsson-style canonicity proof and the canonicity-via-correspondence. The main results of this thesis include an ALBA-aided Jonsson-style canonicity proof for inductive inequalities in distributive modal logic and a Jonsson-style canonicity proof for a certain fragment of the distributive modal μ-calculus.

[1]  Johan van Benthem,et al.  Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.

[2]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[3]  Mai Gehrke,et al.  MONOTONE BOUDED DISTRIBUTIVE LATTICE EXPANSIONS , 2000 .

[4]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[5]  K. Fine Some Connections Between Elementary and Modal Logic , 1975 .

[6]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[7]  Ian M. Hodkinson,et al.  Sahlqvist theorem for modal fixed point logic , 2012, Theor. Comput. Sci..

[8]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[11]  Johan van Benthem,et al.  Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.

[12]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[13]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[14]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[15]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[16]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[17]  Silvio Ghilardi,et al.  Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..

[18]  Johan van Benthem,et al.  Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.

[19]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[20]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA , 2010, J. Appl. Log..

[21]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[22]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[23]  Tomoyuki Suzuki,et al.  CANONICITY RESULTS OF SUBSTRUCTURAL AND LATTICE-BASED LOGICS , 2010, The Review of Symbolic Logic.

[24]  Mai Gehrke,et al.  A View of Canonical Extension , 2009, TbiLLC.

[25]  Samuel Jacob van Gool,et al.  METHODS FOR CANONICITY , 2009 .

[26]  Yde Venema,et al.  Canonical Pseudo-Correspondence , 1998, Advances in Modal Logic.