Robust indicator-based algorithm for interactive evolutionary multiple objective optimization

We propose a novel robust indicator-based algorithm, called IEMO/I, for interactive evolutionary multiple objective optimization. During the optimization run, IEMO/I selects at regular intervals a pair of solutions from the current population to be compared by the Decision Maker. The successively provided holistic judgements are employed to divide the population into fronts of potential optimality. These fronts are, in turn, used to bias the evolutionary search toward a subset of Pareto-optimal solutions being most relevant to the Decision Maker. To ensure a fine approximation of such a subset, IEMO/I employs a hypervolume metric within a steady-state indicator-based evolutionary framework. The extensive experimental evaluation involving a number of benchmark problems confirms that IEMO/I is able to construct solutions being highly preferred by the Decision Maker after a reasonable number of interactions. We also compare IEMO/I with some selected state-of-the-art interactive evolutionary hybrids incorporating preference information in form of pairwise comparisons, proving its competitiveness.

[1]  Michel Beuthe,et al.  Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..

[2]  Krzysztof Ciomek,et al.  Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models , 2017 .

[3]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[4]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[5]  Dipti Srinivasan,et al.  A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition , 2017, IEEE Transactions on Evolutionary Computation.

[6]  Milosz Kadzinski,et al.  ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..

[7]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[8]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[9]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[11]  J. Figueira,et al.  A survey on stochastic multicriteria acceptability analysis methods , 2008 .

[12]  Antreas D. Athanassopoulos,et al.  Dominance and potential optimality in multiple criteria decision analysis with imprecise information , 1997 .

[13]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[14]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[15]  Milosz Kadzinski,et al.  Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: An experimental analysis , 2017, Comput. Oper. Res..

[16]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[17]  Ankur Sinha,et al.  Convex preference cone-based approach for many objective optimization problems , 2018, Comput. Oper. Res..

[18]  G. Choquet Theory of capacities , 1954 .

[19]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Milosz Kadzinski,et al.  Interactive Robust Cone Contraction Method for Multiple Objective Optimization Problems , 2012, Int. J. Inf. Technol. Decis. Mak..

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Milosz Kadzinski,et al.  Inducing probability distributions on the set of value functions by Subjective Stochastic Ordinal Regression , 2016, Knowl. Based Syst..

[23]  Milosz Kadzinski,et al.  Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems , 2017, Eur. J. Oper. Res..

[24]  Jyrki Wallenius,et al.  Impact of Number of Interactions, Different Interaction Patterns, and Human Inconsistencies on Some Hybrid Evolutionary Multiobjective Optimization Algorithms , 2015, Decis. Sci..

[25]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[26]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[27]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[28]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[29]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[30]  Michał K. Tomczyk,et al.  Interactive Evolutionary Multiple Objective Optimization for Group Decision Incorporating Value-based Preference Disaggregation Methods , 2017 .

[31]  Rommert Dekker,et al.  Evaluation of multi-objective optimization approaches for solving green supply chain design problems , 2017 .

[32]  Mandy Ryan,et al.  Using discrete choice experiments to value health care programmes: current practice and future research reflections. , 2003, Applied health economics and health policy.

[33]  Jürgen Branke,et al.  Using Choquet integral as preference model in interactive evolutionary multiobjective optimization , 2016, Eur. J. Oper. Res..

[34]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[35]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[36]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[37]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[38]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[39]  Milosz Kadzinski,et al.  Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization , 2018, Advances in Data Analysis with Computational Intelligence Methods.

[40]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[41]  Heike Trautmann,et al.  Multiobjective evolutionary algorithms based on target region preferences , 2018, Swarm Evol. Comput..

[42]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[43]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.