Cirrus cloud macrophysical and optical properties over North China from CALIOP measurements

Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers. The mean values for cirrus cases over North China are 0.19±0.18 for infrared emittance, 0.41±0.68 for visible optical depth, 0.26±0.12 for integrated depolarization ratio, and 0.72±0.22 for integrated color ratio. When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients, our results show that most of the cirrus clouds profiled using the 0.532 µm channel data stream correspond with an optical depth of less than 1.0. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar, which are mainly impacted by the adiabatic process on the ice cloud content. However, the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

[1]  Yoshihide Takano,et al.  Solar Radiative Transfer in Cirrus Clouds. Part II: Theory and Computation of Multiple Scattering in an Anisotropic Medium , 1989 .

[2]  O. Chomette,et al.  Retrieval of cloud emissivity and particle size frame of the CALIPSO mission , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[3]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[4]  Harshvardhan,et al.  Temperature dependence of cirrus extinction - Implications for climate feedback , 1988 .

[5]  Stuart A. Young,et al.  LIRAD Observations of Tropical Cirrus Clouds in MCTEX. Part II: Optical Properties and Base Cooling in Dissipating Storm Anvil Clouds* , 2002 .

[6]  O. Schrems,et al.  LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study , 2002 .

[7]  Y. Sasano,et al.  Error caused by using a constant extinction/backscattering ratio in the lidar solution. , 1985, Applied optics.

[8]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[9]  M. Vaughan,et al.  VALIDATING CIRRUS CLOUD OPTICAL PROPERTIES RETRIEVED BY CALIPSO , 2008 .

[10]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[11]  James H. Churnside,et al.  The Optical Properties of Equatorial Cirrus from Observations in the ARM Pilot Radiation Observation Experiment , 1998 .

[12]  L. Radke,et al.  A Summary of the Physical Properties of Cirrus Clouds , 1990 .

[13]  A. Heymsfield Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part I: Aircraft Observations of the Growth of the Ice Phase , 1975 .

[14]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[15]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[16]  David M. Winker,et al.  Classification of particle shapes from lidar depolarization ratio in convective ice clouds compared to in situ observations during CRYSTAL-FACE , 2004 .

[17]  C. Platt,et al.  Remote Sounding of High Clouds. IV: Observed Temperature Variations in Cirrus Optical Properties , 1981 .

[18]  Zhaoyan Liu,et al.  CALIOP Algorithm Theoretical Basis Document Part 3 : Scene Classification Algorithms , 2005 .

[19]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[20]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[21]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[22]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[23]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[24]  Michael K. Griffin,et al.  Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications , 1989 .

[25]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[26]  S. Young,et al.  Analysis of lidar backscatter profiles in optically thin clouds. , 1995, Applied optics.

[27]  Zhaoyan Liu,et al.  The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory. , 2007, Optics express.

[28]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[29]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[30]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[31]  G. Mace,et al.  Cirrus clouds and the large-scale atmospheric state: Relationships revealed by six years of ground based data , 2006 .

[32]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[33]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[34]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[35]  David M. Winker,et al.  Airborne validation of spatial properties measured by the CALIPSO lidar , 2007 .

[36]  A. C. Dilley,et al.  Remote Sounding of High Clouds: II. Emissivity of Cirrostratus , 1979 .

[37]  D. Winker,et al.  Laminar cirrus observed near the tropical tropopause by LITE , 1998 .

[38]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[39]  Stuart A. Young,et al.  LIRAD Observations of Tropical Cirrus Clouds in MCTEX. Part I: Optical Properties and Detection of Small Particles in Cold Cirrus* , 2002 .

[40]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[41]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[42]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[43]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[44]  W. Menzel,et al.  Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals , 2007 .

[45]  David M. Winker,et al.  Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data , 2004 .

[46]  Otto Schrems,et al.  Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements , 2002 .

[47]  Soon-Chang Yoon,et al.  Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea , 2008 .

[48]  V. Brovkin,et al.  Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia , 2007 .

[49]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[50]  Kenneth Sassen,et al.  Classifying clouds around the globe with the CloudSat radar: 1‐year of results , 2008 .

[51]  K. Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties , 2001 .

[52]  K. Sassen,et al.  On the radiative properties of contrail cirrus , 1998 .

[53]  Philippe Richaume,et al.  Sunglint observations over land from ground and airborne L-band radiometer data , 2008 .

[54]  J. Nee,et al.  Lidar ratio and depolarization ratio for cirrus clouds. , 2002, Applied optics.

[55]  K. Sassen The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .

[56]  Moustafa T. Chahine,et al.  Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount , 2007 .

[57]  A. Heymsfield Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part III: Numerical Computations of the Growth of the Ice Phase , 1975 .

[58]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[59]  A. Mokssit,et al.  Historical overview of climate change science , 2007 .

[60]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[61]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[62]  Rong-hui Huang,et al.  Impacts of the tropical western Pacific on the East Asian summer monsoon , 1992 .

[63]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[64]  Harshvardhan,et al.  Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model , 1989 .

[65]  Zhaoyan Liu,et al.  Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar. , 2008, Applied optics.