Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: a Bethe-Salpeter study.

We study, using the Bethe-Salpeter formalism, the singlet excitation energies of the zincbacteriochlorin-bacteriochlorin dyad, a paradigmatic photosynthetic complex. In great contrast with standard time-dependent density functional theory calculations with (semi)local kernels, charge transfer excitations are correctly located above the intramolecular Q-band transitions found to be in excellent agreement with experiment. Further, the asymptotic Coulomb behavior towards the true quasiparticle gap for charge transfer excitations at long distance is correctly reproduced, showing that the present scheme allows us to study with the same accuracy intramolecular and charge transfer excitations at various spatial ranges and screening environments without any adjustable parameter.