Extended gravity theories and the Einstein--Hilbert action

I discuss the relation between arbitrarily high-order theories of gravity and scalar--tensor gravity at the level of the field equations and the action. I show that (2n+4)-order gravity is dynamically equivalent to Brans--Dicke gravity with an interaction potential for the Brans--Dicke field and n further scalar fields. This scalar--tensor action is then conformally equivalent to the Einstein--Hilbert action with n+1 scalar fields. This clarifies the nature and extent of the conformal equivalence between extended gravity theories and general relativity with many scalar fields.

[1]  E. Fradkin,et al.  Quantum String Theory Effective Action , 1985 .

[2]  J. Barrow,et al.  The stability of general relativistic cosmological theory , 1983 .

[3]  P. Teyssandier,et al.  The Cauchy problem for the R+R2 theories of gravity without torsion , 1983 .

[4]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[5]  J. O'Hanlon Intermediate-range gravity - a generally covariant model , 1972 .

[6]  J. Barrow,et al.  Inflation and the Conformal Structure of Higher Order Gravity Theories , 1988 .

[7]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[8]  K. Nordtvedt Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences , 1970 .

[9]  K. Maeda,et al.  Effects of R3 and RsR terms on R2 inflation , 1990 .

[10]  S. Adler Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .

[11]  K. Maeda,et al.  Towards the Einstein-Hilbert action via conformal transformation. , 1989, Physical review. D, Particles and fields.

[12]  Brian Whitt Fourth-order gravity as general relativity plus matter , 1984 .

[13]  H. Schmidt Variational derivatives of arbitrarily high order and multi-inflation cosmological models , 1990 .

[14]  J. Barrow,et al.  Extended inflationary universes , 1990 .

[15]  P. Jordan Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen , 1959 .

[16]  S. Capozziello,et al.  Generalized sixth-order gravity and inflation , 1993 .

[17]  Turner,et al.  Origin of density fluctuations in extended inflation. , 1990, Physical review. D, Particles and fields.

[18]  C. Brans Nonlinear Lagrangians and the significance of the metric , 1988 .

[19]  U. Kasper Wheeler-De Witt equations for fourth-order quantum cosmology , 1993 .

[20]  R. Sexl,et al.  On quadratic lagrangians in General Relativity , 1966 .

[21]  L. Brown,et al.  Dimensional Renormalization of Scalar Field Theory in Curved Space-time , 1980 .

[22]  Suen,et al.  The R2 cosmology: Inflation without a phase transition. , 1986, Physical review. D, Particles and fields.

[23]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[24]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[25]  Strings in background fields , 1985 .

[26]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[27]  De Sitter ground states and boundary terms in generalised gravity , 1989 .

[28]  D. Raine General relativity , 1980, Nature.

[29]  P. Steinhardt,et al.  Extended inflationary cosmology. , 1989, Physical review letters.