Randomness Expansion Secured by Quantum Contextuality

The output randomness from a random number generator can be certified by observing the violation of quantum contextuality inequalities based on the Kochen-Specker theorem. Contextuality can be tested in a single quantum system, which significantly simplifies the experimental requirements to observe the violation comparing to the ones based on nonlocality tests. However, it is not yet resolved how to ensure compatibilities for sequential measurements that is required in contextuality tests. Here, we employ a modified Klyachko-Can-Binicioglu-Shumovsky contextuality inequality, which can ease the strict compatibility requirement on measurements. On a trapped single \Ba ion system, we experimentally demonstrate violation of the contextuality inequality and realize self-testing quantum random number expansion by closing detection loopholes. We perform $1.29 \times 10^8$ trials of experiments and extract the randomness of $8.06 \times 10^5$ bits with a speed of 270 bits s$^{-1}$. Our demonstration paves the way for the practical high-speed spot-checking quantum random number expansion and other secure information processing applications.

[1]  Paolo Villoresi,et al.  Source-Device-Independent Ultrafast Quantum Random Number Generation. , 2015, Physical review letters.

[2]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[3]  Guang-Can Guo,et al.  Experimental observation of quantum state-independent contextuality under no-signaling conditions. , 2018, Optics express.

[4]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[5]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[6]  Xiang Zhang,et al.  State-independent experimental test of quantum contextuality with a single trapped ion. , 2012, Physical review letters.

[7]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[8]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[9]  R. G. Beausoleil,et al.  Secure self-calibrating quantum random-bit generator , 2007 .

[10]  Omar Fawzi,et al.  Entropy Accumulation , 2016, Communications in Mathematical Physics.

[11]  Stefano Pironio,et al.  Security of practical private randomness generation , 2011, 1111.6056.

[12]  Thomas Vidick,et al.  Practical device-independent quantum cryptography via entropy accumulation , 2018, Nature Communications.

[13]  N. Kurz,et al.  Hyperfine and optical barium ion qubits , 2010, 1004.1161.

[14]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[15]  C. F. Roos,et al.  Compatibility and noncontextuality for sequential measurements , 2009, 0912.4846.

[16]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[17]  R. Blatt,et al.  Interferometric thermometry of a single sub-Doppler-cooled atom , 2012 .

[18]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[19]  U. Vazirani,et al.  Certifiable quantum dice , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  J. Alonso,et al.  Probing the limits of correlations in an indivisible quantum system , 2017, Physical Review A.

[21]  Yang Liu,et al.  The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. , 2015, The Review of scientific instruments.

[22]  Jochen Szangolies,et al.  Tests against noncontextual models with measurement disturbances , 2013, 1303.3837.

[23]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[24]  Xiongfeng Ma,et al.  High speed device-independent quantum random number generation without detection loophole , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[25]  Xiao Yuan,et al.  Source-Independent Quantum Random Number Generation , 2015, Physical Review X.

[26]  Thomas Monz,et al.  Electromagnetically-induced-transparency ground-state cooling of long ion strings , 2016 .

[27]  Yaoyun Shi,et al.  Physical Randomness Extractors: Generating Random Numbers with Minimal Assumptions , 2014, 1402.4797.

[28]  Yaoyun Shi,et al.  N ov 2 01 4 Universal security for randomness expansion , 2014 .

[29]  Matthew Coudron,et al.  Robust Randomness Amplifiers: Upper and Lower Bounds , 2013, APPROX-RANDOM.

[30]  Paolo Villoresi,et al.  Source-device-independent heterodyne-based quantum random number generator at 17 Gbps , 2018, Nature Communications.

[31]  Alan Mink,et al.  Experimentally generated randomness certified by the impossibility of superluminal signals , 2018, Nature.

[32]  M. Tomasin,et al.  Quantum randomness certified by the uncertainty principle , 2014, 1401.7917.

[33]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[34]  Keitel,et al.  Ground state laser cooling using electromagnetically induced transparency , 2000, Physical review letters.

[35]  Private Communications , 2001 .

[36]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[37]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[38]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[39]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[40]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[41]  Yang Liu,et al.  68 Gbps quantum random number generation by measuring laser phase fluctuations , 2015, ArXiv.

[42]  Richard Moulds,et al.  Quantum Random Number Generators , 2016 .

[43]  S. Rajsbaum Foundations of Cryptography , 2014 .

[44]  Andreas Wallraff,et al.  Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem. , 2017, Physical review letters.

[45]  P. D. Coddington,et al.  Analysis of random number generators using Monte Carlo simulation , 1993, cond-mat/9309017.

[46]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[47]  Y Lin,et al.  Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. , 2013, Physical review letters.

[48]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[49]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[50]  Antonio Acín,et al.  Certified randomness in quantum physics , 2016, Nature.

[51]  Thomas Vidick,et al.  Simple and tight device-independent security proofs , 2016, SIAM J. Comput..

[52]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[53]  Kenneth Goodenough,et al.  Contextuality without nonlocality in a superconducting quantum system , 2016, Nature Communications.

[54]  Chi Zhang,et al.  Sustained State-Independent Quantum Contextual Correlations from a Single Ion. , 2017, Physical review letters.

[55]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.