Readout and control of a single nuclear spin with a metastable electron spin ancilla.

[1]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[2]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[3]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[4]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[5]  S. Simmons,et al.  Ultrafast entangling gates between nuclear spins using photoexcited triplet states , 2012, Nature Physics.

[6]  F. B. Arango,et al.  Ubiquity of optical activity in planar metamaterial scatterers. , 2012, Physical review letters.

[7]  J. Morton,et al.  Coherent storage of photoexcited triplet states using 29Si nuclear spins in silicon. , 2011, Physical review letters.

[8]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[9]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[10]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[11]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[12]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[13]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[14]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[15]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[16]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[17]  J Wrachtrup,et al.  Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. , 2008, Physical review letters.

[18]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[19]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[20]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[21]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[22]  D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005, cond-mat/0507706.

[23]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[24]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[25]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[26]  G. Adriaenssens,et al.  Optical characterization of natural Argyle diamonds , 2002 .

[27]  E. C. Reynhardt,et al.  Nuclear Magnetic Resonance Studies of Diamond , 2001 .

[28]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[29]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[30]  C. Tietz,et al.  Low-temperature microscopy and spectroscopy on single defect centers in diamond , 1999 .

[31]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[32]  E. C. Reynhardt,et al.  13C relaxation in natural diamond , 1997 .

[33]  He,et al.  Paramagnetic resonance of photoexcited N-V defects in diamond. I. Level anticrossing in the 3A ground state. , 1993, Physical review. B, Condensed matter.

[34]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[35]  M. Levitt,et al.  Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids , 1989 .

[36]  Hoch,et al.  Nuclear spin-lattice relaxation of dilute spins in semiconducting diamond. , 1988, Physical review. B, Condensed matter.

[37]  A. T. Collins,et al.  Luminescence decay time of the 1.945 eV centre in type Ib diamond , 1983 .

[38]  G. Davies REVIEW ARTICLE: The Jahn-Teller effect and vibronic coupling at deep levels in diamond , 1981 .

[39]  R. R. Ernst,et al.  Low-power multipulse line narrowing in solid-state NMR , 1981 .

[40]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[41]  R. Clarke,et al.  Triplet-state intersystem crossing rates from optically detected magnetic resonance spectroscopy , 1978 .

[42]  J. Colpa,et al.  Optical nuclear polarization as a consequence of the non-crossing rule (level-anti-crossing): I. Analytical treatment of ONP in the level-crossing region , 1977 .

[43]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  J. Colpa,et al.  Optical nuclear polarization in molecular crystals through an optical excitation cycle , 1975 .

[45]  G. Davies,et al.  Vibronic spectra in diamond , 1974 .

[46]  W. Rhim,et al.  Enhanced resolution for solid state NMR , 1973 .

[47]  D. W. Taylor,et al.  Phonons in Perfect Lattices and in Lattices with Point Imperfections , 1968 .

[48]  A. D. McLachlan,et al.  Introduction to magnetic resonance : with applications to chemistry and chemical physics , 1967 .

[49]  R. Stevenson Phonons in perfect lattices and in lattices with point imperfections : Scottish Universities' Summer School, 1965 , 1966 .

[50]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .