Design and Decoding of Irregular LDPC Codes Based on Discrete Message Passing

We consider discrete message passing (MP) decoding of low-density parity check (LDPC) codes based on information-optimal symmetric look-up table (LUT). A link between discrete message labels and the associated log-likelihood ratio values (defined in terms of density evolution distributions) is established. This link gives rise to an algebraic structure on the message labels and leads to an interpretation of LUT decoding as a form of quantized belief propagation. We then exploit the algebraic structure for low-complexity LUT decoder designs. Our LUT decoding framework is the first to also apply to irregular LDPC codes by taking into account the degree distribution in a joint LUT design. We exploit the relation between LUT decoding and belief propagation to obtain stability conditions and irregular LDPC code designs optimized for LUT decoding. The resulting decoders outperform floating-point precision min-sum decoders at LUT resolutions as low as 3 bit s for regular codes and 4 bits for irregular codes.

[1]  Gerald Matz,et al.  A 588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  Brian M. Kurkoski,et al.  LDPC Decoding Mappings That Maximize Mutual Information , 2016, IEEE Journal on Selected Areas in Communications.

[3]  Ken-ichi Iwata,et al.  Quantizer design for outputs of binary-input discrete memoryless channels using SMAWK algorithm , 2014, 2014 IEEE International Symposium on Information Theory.

[4]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[5]  Lara Dolecek,et al.  Design of LDPC decoders for improved low error rate performance: quantization and algorithm choices , 2009, IEEE Transactions on Communications.

[6]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[7]  Gerhard Bauch,et al.  Trellis based node operations for LDPC decoders from the Information Bottleneck method , 2015, 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS).

[8]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[10]  Nanning Zheng,et al.  LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives , 2013, FAST.

[11]  Borivoje Nikolic,et al.  Low-density parity-check code constructions for hardware implementation , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[12]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[13]  Gerhard Bauch,et al.  Information-Optimum LDPC Decoders Based on the Information Bottleneck Method , 2018, IEEE Access.

[14]  Gerald Matz,et al.  Quantized message passing for LDPC codes , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[15]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[16]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[17]  Gerald Matz,et al.  A fully-unrolled LDPC decoder based on quantized message passing , 2015, 2015 IEEE Workshop on Signal Processing Systems (SiPS).

[18]  Gerald Matz,et al.  On irregular LDPC codes with quantized message passing decoding , 2017, 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[19]  David Declercq,et al.  Finite Alphabet Iterative Decoders—Part II: Towards Guaranteed Error Correction of LDPC Codes via Iterative Decoder Diversity , 2012, IEEE Transactions on Communications.

[20]  Richard D. Wesel,et al.  Soft Information for LDPC Decoding in Flash: Mutual-Information Optimized Quantization , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[21]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[22]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[23]  Naftali Tishby,et al.  Multivariate Information Bottleneck , 2001, Neural Computation.

[24]  F.R. Kschischang,et al.  Low-Density Parity-Check Codes for Discretized Min-Sum Decoding , 2006, 23rd Biennial Symposium on Communications, 2006.

[25]  Brian M. Kurkoski,et al.  Decoding LDPC codes with mutual information-maximizing lookup tables , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[26]  Brian M. Kurkoski,et al.  Noise Thresholds for Discrete LDPC Decoding Mappings , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[27]  Gerhard Bauch,et al.  Optimum message mapping LDPC decoders derived from the sum-product algorithm , 2016, 2016 IEEE International Conference on Communications (ICC).

[28]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[29]  Gerald Matz,et al.  On quantization of log-likelihood ratios for maximum mutual information , 2015, 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[30]  Gerhard Bauch,et al.  Information-Bottleneck Decoding of High-Rate Irregular LDPC Codes for Optical Communication Using Message Alignment , 2018, Applied Sciences.

[31]  Tong Zhang,et al.  On finite precision implementation of low density parity check codes decoder , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[32]  Brian M. Kurkoski,et al.  Quantization of Binary-Input Discrete Memoryless Channels , 2011, IEEE Transactions on Information Theory.

[33]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[34]  Yi Hong,et al.  Quantization of binary input DMC at optimal mutual information using constrained shortest path problem , 2015, 2015 22nd International Conference on Telecommunications (ICT).

[35]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.