On Roto-Translatory Motion: Reductions and Radial Intermediaries

The roto-translational dynamics of an axial-symmetric rigid body is discussed in a central gravitational field. The six-degree-of-freedom Hamiltonian problem is formulated as a perturbation of the Kepler motion and torque-free rotation. A chain of canonical transformations is used to reduce the problem. First, the elimination of the nodes reduces the problem to a system of four degrees of freedom. Then, the elimination of the parallax simplifies the resulting Hamiltonian, which is shaped as a radial intermediary plus a remainder. Some features of this integrable intermediary are pointed out. The normalized first order system in closed form is also given, thus completing the solution. Finally the full reduction of the radial intermediary is constructed using the Hamilton-Jacobi equation.

[1]  W. Ni,et al.  Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging , 2007, 0710.1450.

[2]  A. Deprit Elimination of the nodes in problems ofn bodies , 1983 .

[3]  G. Benettin,et al.  Adiabatic chaos in the spin–orbit problem , 2008 .

[4]  J. Palacián Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field , 2007 .

[5]  J. Ferrándiz,et al.  Elimination of the nodes when the satellite is a non spherical rigid body , 1989 .

[6]  M. Lara,et al.  INTEGRATION OF THE ROTATION OF AN EARTH-LIKE BODY AS A PERTURBED SPHERICAL ROTOR , 2010 .

[7]  Bruce R. Miller,et al.  The critical inclination in artificial satellite theory , 1986 .

[8]  Jack Wisdom,et al.  Evidence for a Past High-Eccentricity Lunar Orbit , 2006, Science.

[9]  M. Lara,et al.  Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational andorbital motion , 2009, 0906.5312.

[10]  M. Lara,et al.  First-order rotation solution of an oblate rigid body under the torque of a perturber in circular orbit , 2010 .

[11]  J. Getino,et al.  GENERAL THEORY OF THE ROTATION OF THE NON-RIGID EARTH AT THE SECOND ORDER. I. THE RIGID MODEL IN ANDOYER VARIABLES , 2010 .

[12]  Melanie Grunwald,et al.  Fundamentals of Celestial Mechanics , 1990 .

[13]  H. Kinoshita First-order perturbations of the two finite body problem , 1972 .

[14]  M. Lara,et al.  Ceres’ rotation solution under the gravitational torque of the Sun , 2011 .

[15]  Daniel J. Scheeres,et al.  Stability of the planar full 2-body problem , 2009 .

[16]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[17]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[18]  Shannon L. Coffey,et al.  Frozen orbits for satellites close to an Earth-like planet , 1994 .

[19]  On the roto-translatory motion of a satellite of an oblate primary , 1993 .

[20]  L. Healy The Main Problem in Satellite Theory Revisited , 2000 .

[21]  J. Vinti,et al.  Theory of an accurate intermediary orbit for satellite astronomy , 1961 .

[22]  Kyle T. Alfriend,et al.  Elimination of the perigee in the satellite problem , 1984 .

[23]  André Deprit,et al.  The elimination of the parallax in satellite theory , 1981 .

[24]  J. San-Juan,et al.  Short Term Evolution of Artificial Satellites , 2001 .

[25]  F. L. Chernous’ko,et al.  On the motion of a satellite about its center of mass under the action of gravitational moments , 1963 .

[26]  B. Garfinkel,et al.  Spherical Coordinate Intermediaries for an Artificial Satellite , 1970 .

[27]  Shannon L. Coffey,et al.  Third-Order Solution to the Main Problem in Satellite Theory , 1982 .

[28]  A. Deprit,et al.  Note on Cid's radial intermediary and the method of averaging , 1987 .

[29]  Jack Wisdom,et al.  Evolution of the Earth-Moon System , 1994 .

[30]  Gen-Ichiro Hori,et al.  Theory of general perturbations with unspecified canonical variables , 1966 .