Calibrating strategies for evolutionary algorithms

The control of parameters during the execution of evolutionary algorithms is an open research area. In this paper, we propose new parameter control strategies for evolutionary approaches, based on reinforcement learning ideas. Our approach provides efficient and low cost adaptive techniques for parameter control. Moreover, it is a general method, thus it could be applied to any evolutionary approach having more than one operator. We contrast our results with tuning techniques and HaEa a random parameter control.

[1]  Kalyanmoy Deb,et al.  Understanding Interactions among Genetic Algorithm Parameters , 1998, FOGA.

[2]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[3]  Larry J. Eshelman,et al.  Proceedings of the 6th International Conference on Genetic Algorithms , 1995 .

[4]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[5]  Berwin A. Turlach,et al.  Statistical Exploratory Analysis of Genetic Algorithms: The Influence of Gray Codes upon the Difficulty of a Problem , 2004, Australian Conference on Artificial Intelligence.

[6]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[7]  A. E. Eiben,et al.  Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.

[8]  Jonatan Gómez,et al.  Self Adaptation of Operator Rates in Evolutionary Algorithms , 2004, GECCO.

[9]  Richard M. Everson,et al.  Controlling Genetic Algorithms With Reinforcement Learning , 2002, GECCO.

[10]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[11]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[12]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[13]  Xavier Bonnaire,et al.  Inheriting Parents Operators: A New Dynamic Strategy for Improving Evolutionary Algorithms , 2002, ISMIS.

[14]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[15]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[16]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[17]  Dirk Thierens,et al.  Adaptive Strategies for Operator Allocation , 2007, Parameter Setting in Evolutionary Algorithms.

[18]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[19]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[20]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.