Nanoionics-based resistive switching memories Many metal – insulator –

RaineR WaseR1,2* and Masakazu aono3,4 1Institut für Werkstoffe der Elektrotechnik 2, RWTH Aachen University, 52056 Aachen, Germany 2Institut für Festkörperforschung/CNI—Center of Nanoelectronics for Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany 3Nanomaterials Laboratories, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 4ICORP/Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan *e-mail: r.waser@fz-juelich.de

[1]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[2]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[3]  Rainer Waser,et al.  Nanoscale resistive switching in SrTiO3 thin films , 2007 .

[4]  Anirban Bandyopadhyay,et al.  Large conductance switching and memory effects in organic molecules for data-storage applications , 2003 .

[5]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[6]  Masakazu Aono,et al.  Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch , 2005 .

[7]  E. Lörtscher,et al.  Reversible and controllable switching of a single-molecule junction. , 2006, Small.

[8]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[9]  John Wawrzynek,et al.  Stochastic spatial routing for reconfigurable networks , 2006, Microprocess. Microsystems.

[10]  M. Angerbauer,et al.  A Non-Volatile 2Mbit CBRAM Memory Core Featuring Advanced Read and Program Control , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[11]  Harold J. Hovel,et al.  Switching and Memory Characteristics of ZnSe - Ge Heterojunctions , 1971 .

[12]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[13]  D. P. Oxley,et al.  ELECTROFORMING, SWITCHING AND MEMORY EFFECTS IN OXIDE THIN FILMS , 1977 .

[14]  Spatially extended nature of resistive switching in perovskite oxide thin films , 2006, cond-mat/0601451.

[15]  P. van der Sluis,et al.  Non-volatile memory cells based on ZnxCd1−xS ferroelectric Schottky diodes , 2003 .

[16]  Masashi Kawasaki,et al.  Resistance switching memory device with a nanoscale confined current path , 2007 .

[17]  Yujong Kim,et al.  Colossal electroresistance mechanism in a Au ∕ Pr 0.7 Ca 0.3 Mn O 3 ∕ Pt sandwich structure: Evidence for a Mott transition , 2006 .

[18]  R. Cavin,et al.  Research directions and challenges in nanoelectronics , 2006 .

[19]  Naijuan Wu,et al.  Resistance switching in perovskite thin films , 2006 .

[20]  Philip M. Rice,et al.  Organic Materials and Thin‐Film Structures for Cross‐Point Memory Cells Based on Trapping in Metallic Nanoparticles , 2005 .

[21]  D. V. Sulway,et al.  The detection of current filaments in VO2 thin-film switches using the scanning electron microscope , 1973 .

[22]  Shibing Long,et al.  Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide , 2007 .

[23]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[24]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[25]  T. Hasegawa,et al.  Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction , 2006 .

[26]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3 , 2004, cond-mat/0411474.

[27]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[28]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[29]  P. Tran,et al.  Opportunities for nanotechnology-enabled bioactive bone implants , 2009 .

[30]  M. Mayor,et al.  Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. , 2006, Faraday discussions.

[31]  R. Waser,et al.  A Novel Reference Scheme for Reading Passive Resistive Crossbar Memories , 2006, IEEE Transactions on Nanotechnology.

[32]  Y. Tokura,et al.  Strong electron correlation effects in non-volatile electronic memory devices , 2005, Symposium Non-Volatile Memory Technology 2005..

[33]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[34]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[35]  Markus Janousch,et al.  Valence states of Cr and the insulator-to-metal transition in Cr-doped Sr Ti O 3 , 2005 .

[36]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[37]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[38]  Richard S. Potember,et al.  Electrical switching and memory phenomena in Cu‐TCNQ thin films , 1979 .

[39]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[40]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[42]  M. Mayor,et al.  Conductance of redox-active single molecular junctions: an electrochemical approach , 2007 .

[43]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[44]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[45]  R. Waser,et al.  Resistive switching of rose bengal devices: A molecular effect? , 2006 .

[46]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[47]  T. Schimmel,et al.  Gate-controlled atomic quantum switch. , 2004, Physical review letters.

[48]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[49]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[50]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[51]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[52]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[53]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[54]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[55]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[56]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[57]  Zheng Wang,et al.  Resistive Switching Mechanism in Zn x Cd 1−x S Nonvolatile Memory Devices , 2007 .

[58]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[59]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[60]  Giorgos Fagas,et al.  Introducing Molecular Electronics: A brief overview , 2006 .

[61]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[62]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[63]  R. Pinto Filamentary switching and memory action in thin anodic oxides , 1971 .

[64]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[65]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[66]  C. Wagner Physical Chemistry of Ionic Crystals Involving Small Concentrations of Foreign Substances , 1953 .

[67]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[68]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[69]  R. Fleming,et al.  Memory switching in glow discharge polymerized thin films , 1975 .

[70]  R. Stanley Williams,et al.  Nanoelectronic architectures , 2005 .

[71]  Masashi Kawasaki,et al.  Interface resistance switching at a few nanometer thick perovskite manganite active layers , 2006 .

[72]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[73]  J. Bruyère,et al.  SWITCHING AND NEGATIVE RESISTANCE IN THIN FILMS OF NICKEL OXIDE , 1970 .

[74]  Alexander M. Grishin,et al.  Giant resistance switching in metal-insulator-manganite junctions : Evidence for Mott transition , 2005 .

[75]  Rainer Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism , 1990 .

[76]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.