Ultrafast probes of electron–hole transitions between two atomic layers

[1]  A. Chernikov,et al.  Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. , 2017, Nano letters.

[2]  P. Ajayan,et al.  Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures , 2016, Nature Communications.

[3]  M. Jo,et al.  1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy , 2016, Nature Communications.

[4]  H. Schmidt,et al.  Electronic Transport Properties of Transition Metal Dichalcogenide Field‐Effect Devices: Surface and Interface Effects , 2015 .

[5]  S. Louie,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[6]  C. A. Nelson,et al.  Correction to "charge transfer excitons at van der Waals interfaces". , 2015, Journal of the American Chemical Society.

[7]  K. Thygesen,et al.  Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. , 2015, Physical review letters.

[8]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[9]  R. Bratschitsch,et al.  Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.

[10]  X. Marie,et al.  2D materials: Ultrafast exciton dynamics. , 2015, Nature materials.

[11]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[12]  Hsin-Ying Chiu,et al.  Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures , 2014, Nature Communications.

[13]  Ming-Yang Li,et al.  Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry , 2014 .

[14]  Zhirong Liu,et al.  Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory. , 2014, The Journal of chemical physics.

[15]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[16]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[17]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[18]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[19]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[20]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[21]  N. Marzari,et al.  Electron-phonon interactions and the intrinsic electrical resistivity of graphene. , 2014, Nano letters.

[22]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[23]  Xiewen Wen,et al.  Molecular conformations of crystalline L-cysteine determined with vibrational cross angle measurements. , 2013, The journal of physical chemistry. B.

[24]  D. Jiang,et al.  Vibrational cross-angles in condensed molecules: a structural tool. , 2013, The journal of physical chemistry. A.

[25]  M. Esmaeilzadeh,et al.  Energy levels of exciton in a gapped graphene sheet , 2013 .

[26]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[27]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[28]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[29]  E. Janzén,et al.  Effective mass of electron in monolayer graphene: Electron-phonon interaction , 2013 .

[30]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[31]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[32]  Ying Dai,et al.  First-Principles Study of the Graphene@MoSe2 Heterobilayers , 2011 .

[33]  N. Peres,et al.  Observation of intra- and inter-band transitions in the transient optical response of graphene , 2011, 1104.3104.

[34]  Li Yang Excitons in intrinsic and bilayer graphene , 2011 .

[35]  J. Shan,et al.  Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. , 2010, Physical review letters.

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  D. Chemla,et al.  Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases , 2008, 0809.2080.

[38]  D. Veksler,et al.  Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible , 2008, 0801.3302.

[39]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[40]  D. Chemla,et al.  Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas , 2003, Nature.

[41]  Tilmann Kuhn,et al.  Dynamics of exciton formation for near band-gap excitations , 2001 .

[42]  Jagdeep Shah,et al.  Many-body and correlation effects in semiconductors , 2001, Nature.

[43]  Rossi,et al.  Coupled free-carrier and exciton relaxation in optically excited semiconductors. , 1996, Physical review. B, Condensed matter.

[44]  Moses,et al.  Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60. , 1994, Physical review. B, Condensed matter.

[45]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[46]  A. Amassian,et al.  Efficient charge generation by relaxed charge-transfer states at organic interfaces. , 2014, Nature materials.

[47]  A. Heeger,et al.  25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation , 2014, Advanced materials.

[48]  J. Shan,et al.  Observation of tightly bound trions in monolayer MoS , 2012 .

[49]  A. Hagfeldt,et al.  Molecular photovoltaics. , 2000, Accounts of chemical research.