On Markov Chain Monte Carlo Acceleration
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] Marius Iosifescu,et al. Finite Markov Processes and Their Applications , 1981 .
[4] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[6] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[7] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[8] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[9] Douglas M. Bates,et al. Nonlinear Regression Analysis and Its Applications , 1988 .
[10] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[11] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[12] A. Raftery,et al. How Many Iterations in the Gibbs Sampler , 1991 .
[13] Adrian F. M. Smith,et al. Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .
[14] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[15] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[16] B. Carlin,et al. On the Convergence of Successive Substitution Sampling , 1992 .
[17] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[18] M. Tanner,et al. Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .
[19] Alan E. Gelfand,et al. Bayesian statistics without tears: A sampling-resampling perspective , 1992 .
[20] J. Besag,et al. Spatial Statistics and Bayesian Computation , 1993 .
[21] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[22] J Besag,et al. DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .
[23] A. Gelfand,et al. Maximum-likelihood estimation for constrained- or missing-data models , 1993 .
[24] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[25] Adrian F. M. Smith,et al. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .
[26] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[27] A. Zellner,et al. Gibbs Sampler Convergence Criteria , 1995 .