On Markov Chain Monte Carlo Acceleration

Abstract Markov chain Monte Carlo (MCMC) methods are currently enjoying a surge of interest within the statistical community. The goal of this work is to formalize and support two distinct adaptive strategies that typically accelerate the convergence of an MCMC algorithm. One approach is through resampling; the other incorporates adaptive switching of the transition kernel. Support is both by analytic arguments and simulation study. Application is envisioned in low-dimensional but nontrivial problems. Two pathological illustrations are presented. Connections with reparameterization are discussed as well as possible difficulties with infinitely often adaptation.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[6]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[7]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[8]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[9]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[10]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[11]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[12]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[13]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[14]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[15]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[16]  B. Carlin,et al.  On the Convergence of Successive Substitution Sampling , 1992 .

[17]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[18]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[19]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[20]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[21]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[22]  J Besag,et al.  DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .

[23]  A. Gelfand,et al.  Maximum-likelihood estimation for constrained- or missing-data models , 1993 .

[24]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[25]  Adrian F. M. Smith,et al.  Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .

[26]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[27]  A. Zellner,et al.  Gibbs Sampler Convergence Criteria , 1995 .