The 2D Orientation Interpolation Problem: A Symmetric Space Approach

In this paper, we propose a novel construction of Bezier curves of two-dimensional (\(2\)D) orientations using the geometry of real projective plane \(\mathrm{\mathbb {R}P^{2}}\). Unlike the commonly adopted unit 2-sphere model \(S^{2}\), \(\mathrm{\mathbb {R}P^{2}}\) is naturally embedded in the \(3\)D special orthogonal group \(\mathrm{SO(3)}\). It is also a symmetric space that is equipped with a particular class of isometries called geodesic symmetry, which allows us to generate any geodesics using the exponential map of \(\mathrm{SO(3)}\). We implement the generated geodesics to construct Bezier curves for direction interpolation.

[1]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[2]  D. Meier Invariant higher-order variational problems: Reduction, geometry and applications , 2013 .

[3]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[4]  Clyde F. Martin,et al.  Geometry and Control of Human Eye Movements , 2007, IEEE Transactions on Automatic Control.

[5]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[6]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[7]  C. Gosselin,et al.  Advantages of the modified Euler angles in the design and control of PKMs , 2002 .

[8]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[9]  Krzysztof Andrzej Krakowski,et al.  Envelopes of splines in the projective plane , 2005, IMA J. Math. Control. Inf..

[10]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[11]  Zexiang Li,et al.  Inversion Symmetry of the Euclidean Group: Theory and Application to Robot Kinematics , 2016, IEEE Transactions on Robotics.

[12]  Andreas Müller,et al.  Smooth orientation path planning with quaternions using B-splines , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  P. Crouch,et al.  The De Casteljau Algorithm on Lie Groups and Spheres , 1999 .

[14]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[15]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[16]  Otto Röschel,et al.  Rational motion design - a survey , 1998, Comput. Aided Des..

[17]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[18]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[19]  F. Park,et al.  Cubic spline algorithms for orientation interpolation , 1999 .

[20]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[21]  Zexiang Li,et al.  Geometric properties of zero-torsion parallel kinematics machines , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Richard P. Paul,et al.  Kinematics of Robot Wrists , 1983 .