A probabilistic multi-fidelity aero-engine preliminary design optimization framework: technical and commercial perspectives

Conceptual and preliminary design phases of aerospace gas turbines compromise a particularly uncertain and challenging stage of their development. It is at these early design phases when the most critical and influential architectural decisions are made. The outcomes of those decisions have a direct impact on a multitude of the aero-engine design attributes such as performance, weight, specific fuel consumption and life-cycle cost - the factors directly influencing the economic value and market success of a prospective power system. Hence, the commercial success of a specific aero-engine and the technical aspects of the processes used in its design are strongly correlated. This work targets the examination of that relationship and presents a rationale for the development of an Integrated Framework for Uncertainty Quantification and Multi-Objective Optimization. First, the commercial aspects of a typical aerospace design project are considered. Then, the top level structure of aero-engine design process is considered from the technical point of view. Finally, the top-level architecture of the framework is discussed and a brief update on the current development status of its implementation is presented.