An electrochemical chiral sensing platform for propranolol enantiomers based on size-controlled gold nanocomposite

[1]  Pramod K. Kalambate,et al.  Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. , 2014, Talanta.

[2]  Wei Li,et al.  Enantioseparation of chiral ofloxacin using biomacromolecules , 2013, Korean Journal of Chemical Engineering.

[3]  Jitao Chen,et al.  A chiral electrochemical sensor for propranolol based on multi-walled carbon nanotubes/ionic liquids nanocomposite. , 2013, Talanta.

[4]  A. Srivastava,et al.  Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. , 2013, The Analyst.

[5]  Benjamin D. Sachs,et al.  Pharmacological blockade of a β2AR-β-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model , 2013, Cell cycle.

[6]  Pradeep Mathur,et al.  Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. , 2013, Biosensors & bioelectronics.

[7]  C. Dong,et al.  A simple method for the determination of enantiomeric composition of propranolol enantiomers. , 2013, The Analyst.

[8]  M. Oltean,et al.  Chiral recognition and quantification of propranolol enantiomers by surface enhanced Raman scattering through supramolecular interaction with β-cyclodextrin. , 2012, Talanta.

[9]  R. Kataky,et al.  Chiral interactions of the drug propranolol and α1-acid-glycoprotein at a micro liquid-liquid interface. , 2012, Analytical chemistry.

[10]  S. Pakapongpan,et al.  Electrochemical sensors for hemoglobin and myoglobin detection based on methylene blue-multiwalled carbon nanotubes nanohybrid-modified glassy carbon electrode , 2011 .

[11]  Lei Jiang,et al.  Functional biointerface materials inspired from nature. , 2011, Chemical Society reviews.

[12]  A. Srivastava,et al.  Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode , 2010 .

[13]  Wei Zhang,et al.  Reversible functionalization of multi-walled carbon nanotubes with organic dyes , 2010 .

[14]  Jianhua Xu,et al.  Enantioselective binding of L,D-phenylalanine to ct DNA. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[15]  Bridget A. Becker,et al.  Probing the binding of propranolol enantiomers to alpha1-acid glycoprotein with ligand-detected NMR experiments. , 2008, The journal of physical chemistry. B.

[16]  Dongxue Han,et al.  Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites , 2008 .

[17]  Qin Tian,et al.  Chiral separation of l,d-tyrosine and l,d-tryptophan by ct DNA , 2007 .

[18]  Robert Root-Bernstein,et al.  Simultaneous origin of homochirality, the genetic code and its directionality. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[19]  D. Cui Advances and prospects on biomolecules functionalized carbon nanotubes. , 2007, Journal of nanoscience and nanotechnology.

[20]  Yingxiang Du,et al.  Study on the interaction between the chiral drug of propranolol and alpha1-acid glycoprotein by fluorescence spectrophotometry. , 2007, Journal of photochemistry and photobiology. B, Biology.

[21]  Changqing Sun,et al.  Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis. , 2006, Bioelectrochemistry.

[22]  P. Yáñez‐Sedeño,et al.  Gold nanoparticle-based electrochemical biosensors , 2005, Analytical and bioanalytical chemistry.

[23]  C. Sun,et al.  Potentiometric, Enantioselective Electrode Responsive to Propranolol Enantiomers Based on a Lipophilic β‐Cyclodextrin , 2004 .

[24]  W. Baeyens,et al.  Use of polystyrene nanoparticles to enhance enantiomeric separation of propranolol by capillary electrophoresis with Hp-beta-CD as chiral selector , 2004 .

[25]  W. Sigmund,et al.  Functionalized multiwall carbon nanotube/gold nanoparticle composites. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Medina-Hernández,et al.  Fast enantiomeric separation of propranolol by affinity capillary electrophoresis using human serum albumin as chiral selector: application to quality control of pharmaceuticals , 2004 .

[27]  M. Arora,et al.  Direct enantiomeric resolution of (+/-)-atenolol, (+/-)-metoprolol, and (+/-)-propranolol by impregnated TLC using L-aspartic acid as chiral selector. , 2003, Biomedical chromatography : BMC.

[28]  T. Peng,et al.  Investigation of the interaction of DNA and actinomycin D by cyclic voltammetry , 2003 .

[29]  M. Yamaguchi,et al.  Chiral recognition in the binding of helicenediamine to double strand DNA: interactions between low molecular weight helical compounds and a helical polymer. , 2002, Bioorganic & medicinal chemistry.

[30]  Jun Liu,et al.  Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. , 2002, The Analyst.

[31]  D. Landolt,et al.  Adsorption of an Organic Corrosion Inhibitor on Iron and Gold Studied with a Rotating EQCM , 2001 .

[32]  N. Li,et al.  Electrochemical studies of NiTMpyP and interaction with DNA. , 1998, Talanta.

[33]  J. Hermansson,et al.  Direct injection of large volumes of plasma/serum on a new biocompatible extraction column for the determination of atenolol, propranolol and ibuprofen. Mechanisms for the improvement of chromatographic performance. , 1998, Journal of chromatography. A.

[34]  N. Nakashima,et al.  Electrode Reaction of Methylene Blue at an Alkanethiol-Modified Gold Electrode As Characterized by Electroreflectance Spectroscopy , 1996 .

[35]  Timothy W. Johann,et al.  Recognition of DNA by octahedral coordination complexes , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  M. Palaniandavar,et al.  Chiral discrimination in the binding of tris(phenanthroline)ruthenium(II) to calf thymus DNA: an electrochemical study. , 1996, Bioconjugate chemistry.

[37]  I. Willner,et al.  Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers , 1995 .

[38]  W. Kutner,et al.  Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance , 1999 .

[39]  H. Aboul‐Enein,et al.  Direct enantioselective separation of some propranolol analogs by HPLC on normal and reversed cellulose chiral stationary phases , 1996 .