High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule.

Born-Oppenheimer approximation Hylleraas variational calculations with up to 7034 expansion terms are reported for the 1sigma(g)+ ground state of neutral hydrogen at various internuclear distances. The nonrelativistic energy is calculated to be -1.174 475 714 220(1) hartree at R = 1.4 bohr, which is four orders of magnitude better than the best previous Hylleraas calculation, that of Wolniewicz [J. Chem. Phys. 103, 1792 (1995)]. This result agrees well with the best previous variational energy, -1.174 475 714 216 hartree, of Cencek (personal communication), obtained using explicitly correlated Gaussians (ECGs) [Cencek and Rychlewski, J. Chem. Phys. 98, 1252 (1993); Cencek et al., ibid. 95, 2572 (1995); Rychlewski, Adv. Quantum Chem. 31, 173 (1998)]. The uncertainty in our result is also discussed. The nonrelativistic energy is calculated to be -1.174 475 931 399(1) hartree at the equilibrium R = 1.4011 bohr distance. This result also agrees well with the best previous variational energy, -1.174 475 931 389 hartree, of Cencek and Rychlewski [Rychlewski, Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (Wiley, New York, 2003), Vol. 2, pp. 199-218; Rychlewski, Explicitly Correlated Wave Functions in Chemistry and Physics Theory and Applications, edited by J. Rychlewski (Kluwer Academic, Dordrecht, 2003), pp. 91-147.], obtained using ECGs.

[1]  J. Rychlewski,et al.  The equivalence of explicitly correlated Slater and Gaussian functions in variational quantum chemistry computations: The ground state of H2 , 1994 .

[2]  D. Clary Variational calculations on many-electron diatomic molecules using Hylleraas-type wavefunctions , 1977 .

[3]  E. Eyler,et al.  Dissociation energies of molecular hydrogen and the hydrogen molecular ion. , 2004, Physical review letters.

[4]  N. Handy,et al.  CI-Hylleraas variational calculation on the ground state of the neon atom , 1976 .

[5]  E. Clementi,et al.  Gaussian functions in Hylleraas‐configuration‐interaction calculations. VI. The first excited state of H+3 , 1991 .

[6]  James S. Sims,et al.  High‐precision Hy–CI variational calculations for the ground state of neutral helium and helium‐like ions , 2002 .

[7]  D. Clary Configuration-interaction-Hylleraas calculations on one-positron atomic systems , 1976 .

[8]  W. Kołos,et al.  Correlated Orbitals for the Ground State of the Hydrogen Molecule , 1960 .

[9]  G. Corongiu,et al.  From Atoms to Large Chemical Systems with Computational Chemistry. Synthesis on Theoretical Methods and Computational Techniques , 1996 .

[10]  Klaus Rüdenberg A Study of Two‐Center Integrals Useful in Calculations on Molecular Structure. II. The Two‐Center Exchange Integrals , 1951 .

[11]  J. Rychlewski Explicitly Correlated Functions in Molecular Quantum Chemistry , 1998 .

[12]  F. Harris Molecular Orbital Studies of Diatomic Molecules. I. Method of Computation for Single Configurations of Heteronuclear Systems , 1960 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Wl,et al.  Improved theoretical dissociation energy and ionization potential for the ground state of the hydrogen molecule , 1993 .

[15]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[16]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations of atoms and molecules , 2003 .

[17]  J. Komasa,et al.  Three-electron integral in a Gaussian basis set with linear terms , 2004 .

[18]  G. W. F. Drake,et al.  High Precision Theory of Atomic Helium , 1999 .

[19]  A. D. McLean,et al.  Configuration Interaction in the Hydrogen Molecule—The Ground State , 1960 .

[20]  E. Clementi,et al.  Gaussian functions in Hylleraas‐configuration interaction calculations. III. Wave functions for the X 1ξ+g state of hydrogen , 1989 .

[21]  Wojciech Cencek,et al.  Accurate relativistic energies of one‐ and two‐electron systems using Gaussian wave functions , 1996 .

[22]  Enrico Clementi,et al.  Modern Techniques in Computational Chemistry: MOTECC™ -89 , 1899 .

[23]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[24]  H. James,et al.  The Ground State of the Hydrogen Molecule , 1933 .

[25]  D. M. Bishop,et al.  Rigorous theoretical investigation of the ground state of H/sub 2/ , 1978 .

[26]  S. Mahulikar,et al.  Physica Scripta , 2004 .

[27]  E. Clementi,et al.  Time scales and other problems in linking simulations of simple chemical systems to more complex ones , 1993 .

[28]  E. Clementi,et al.  Gaussian functions in Hylleraas‐configuration interaction calculations. II. Potential curves for the b 3Σ+u and the e 3Σ+u states of hydrogen , 1989 .

[29]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[30]  Stephen Wilson,et al.  Handbook of molecular physics and quantum chemistry , 2003 .

[31]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. I. General theory and test results , 1993 .

[33]  James S. Sims,et al.  Combined Configuration-Interaction—Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom , 1971 .

[34]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[35]  N. Handy,et al.  Hylleraas-type wavefunction for lithium hydride , 1977 .

[36]  Jacek Komasa,et al.  Explicitly Correlated Functions in Variational Calculations , 2003 .

[37]  Jacek Rychlewski,et al.  Explicitly correlated wave functions in chemistry and physics : theory and applications , 2003 .

[38]  Wl odzimierz Kol os Extrapolated Born–Oppenheimer energy for the ground state of the hydrogen molecule , 1994 .

[39]  W. Kołos,et al.  Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .