Generalizing determinization from automata to coalgebras

The powerset construction is a standard method for converting a nondeter- ministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coal- gebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of behavioural equivalence (�F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construc- tion, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics.

[1]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[2]  F. Bartels On generalised coinduction and probabilistic specification formats : Distributive laws in coalgebraic modelling , 2004 .

[3]  Luís Monteiro A Coalgebraic Characterization of Behaviours in the Linear Time - Branching Time Spectrum , 2008, WADT.

[4]  H.-J. Hoehnke,et al.  Manes, E. G., Algebraic Theories, Berlin‐Heidelberg‐New York. Springer‐Verlag. 1976. IX, 356 S., DM 55,70. US $ 22.20. (Graduate Texts in Mathematics 26) , 1978 .

[5]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[6]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[7]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[8]  Marina Lenisa,et al.  From Set-theoretic Coinduction to Coalgebraic Coinduction: some results, some problems , 1999, CMCS.

[9]  Jan J. M. M. Rutten,et al.  Algebraic Specification and Coalgebraic Synthesis of Mealy Automata , 2006, FACS.

[10]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[11]  Ichiro Hasuo,et al.  Tracing Anonymity with Coalgebras , 2008 .

[12]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[13]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[14]  Alexandra Silva,et al.  An Algebra for Kripke Polynomial Coalgebras , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[15]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[16]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[17]  C. A. R. Hoare,et al.  Specification-oriented semantics for Communicating Processes , 1983, Acta Informatica.

[18]  Alexander Kurz,et al.  On coalgebras over algebras , 2011, Theor. Comput. Sci..

[19]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[20]  Bartek Klin A Coalgebraic Approach to Process Equivalence and a Coinduction Principle for Traces , 2004, CMCS.

[21]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[22]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[23]  Sheila A. Greibach,et al.  A note on pushdown store automata and regular systems , 1967 .

[24]  Nick Benton,et al.  Monads and Effects , 2000, APPSEM.

[25]  John Power,et al.  A Coalgebraic Foundation for Linear Time Semantics , 1999, CTCS.

[26]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[27]  Helle Hvid Hansen,et al.  Coalgebraising Subsequential Transducers , 2008, CMCS.

[28]  E. Manes Algebraic Theories in a Category , 1976 .

[29]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[30]  Alexandra Silva,et al.  Trace semantics via determinization , 2015, J. Comput. Syst. Sci..

[31]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[32]  J. Rutten Coalgebra, concurrency, and control , 1999 .

[33]  Peter Buchholz,et al.  Bisimulation relations for weighted automata , 2008, Theor. Comput. Sci..

[34]  M. Arbib,et al.  Fuzzy machines in a category , 1975, Bulletin of the Australian Mathematical Society.

[35]  Marcello M. Bonsangue,et al.  Context-Free Languages, Coalgebraically , 2011, CALCO.

[36]  H. Peter Gumm,et al.  Monoid-labeled transition systems , 2001, CMCS.

[37]  Alexandra Silva,et al.  Final Semantics for Decorated Traces , 2012, MFPS.

[38]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[39]  Scott A. Smolka,et al.  Equivalences, Congruences, and Complete Axiomatizations for Probabilistic Processes , 1990, CONCUR.

[40]  Christian Kissig,et al.  Generic Trace Logics , 2011, ArXiv.

[41]  John Power,et al.  Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads , 2000, CMCS.

[42]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[43]  R. James Evey,et al.  Application of pushdown-store machines , 1899, AFIPS '63 (Fall).

[44]  Alexandra Silva,et al.  Generalizing the powerset construction, coalgebraically , 2010, FSTTCS.

[45]  Marcel Paul Schützenberger,et al.  On Context-Free Languages and Push-Down Automata , 1963, Inf. Control..

[46]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[47]  Bart Jacobs,et al.  Distributive laws for the coinductive solution of recursive equations , 2006, Inf. Comput..