A 199-line Matlab code for Pareto-optimal tracing in topology optimization

The paper ‘A 99-line topology optimization code written in Matlab’ by Sigmund (Struct Multidisc Optim 21(2):120–127, 2001) demonstrated that SIMP-based topology optimization can be easily implemented in less than hundred lines of Matlab code. The published method and code has been used even since by numerous researchers to advance the field of topology optimization. Inspired by the above paper, we demonstrate here that, by exploiting the notion of topological-sensitivity (an alternate to SIMP), one can generate Pareto-optimal topologies in about twice the number of lines of Matlab code. In other words, optimal topologies for various volume fractions can be generated in a highly efficient manner, by directly tracing the Pareto-optimal curve.

[1]  Krishnan Suresh,et al.  Feature sensitivity: A generalization of topological sensitivity , 2008 .

[2]  Marc Dambrine,et al.  Influence of a boundary perforation on the Dirichlet energy , 2005 .

[3]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[4]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[5]  K. Abdel-Malek,et al.  Compliant mechanism design using multi-objective topology optimization scheme of continuum structures , 2005 .

[6]  Ting-Yu Chen,et al.  Multiobjective optimal topology design of structures , 1998 .

[7]  Samuel Amstutz,et al.  Sensitivity analysis with respect to a local perturbation of the material property , 2006, Asymptot. Anal..

[8]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[9]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .

[10]  A. Messac,et al.  Required Relationship Between Objective Function and Pareto Frontier Orders: Practical Implications , 2001 .

[11]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[12]  Glynn J. Sundararaj,et al.  Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers , 2000 .

[13]  G. Rozvany Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .

[14]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[15]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[16]  Jan Sokolowski,et al.  Optimality Conditions for Simultaneous Topology and Shape Optimization , 2003, SIAM J. Control. Optim..

[17]  Nikhil Padhye Topology optimization of compliant mechanism using multi-objective particle swarm optimization , 2008, GECCO '08.

[18]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[19]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[20]  Jared L. Cohon,et al.  Multiobjective programming and planning , 2004 .

[21]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[22]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[23]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[24]  Marc Schoenauer,et al.  Application of a Multi-Objective Evolutionary Algorithm to Topological Optimum Design , 2002 .

[25]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[26]  J. F. Aguilar Madeira,et al.  Multi-objective optimization of structures topology by genetic algorithms , 2005, Adv. Eng. Softw..

[27]  G. Rozvany Stress ratio and compliance based methods in topology optimization – a critical review , 2001 .

[28]  Marc Schoenauer,et al.  Multi-Objective Evolutionary Topological Optimum Design , 2002 .

[29]  M. Burger,et al.  Incorporating topological derivatives into level set methods , 2004 .

[30]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[31]  Weihong Zhang,et al.  Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization , 2002 .

[32]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[33]  Panos Y. Papalambros,et al.  The optimization paradigm in engineering design: promises and challenges , 2002, Comput. Aided Des..

[34]  Zhen Luo,et al.  A new multi-objective programming scheme for topology optimization of compliant mechanisms , 2009 .

[35]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[36]  Edgardo Taroco,et al.  Topological-Shape Sensitivity Method: Theory and Applications , 2006 .

[37]  Bessem Samet The topological asymptotic with respect to a singular boundary perturbation , 2003 .

[38]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[39]  M. Bendsøe,et al.  A topological derivative method for topology optimization , 2007 .