Transactions on Rough Sets XVI

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. Volume XVI includes extensions of papers from the Rough Sets and Knowledge Technology Conference which was held in Banff, Canada, in October 2011. In addition this book contains a long paper based on a PhD thesis. The papers cover both theory and applications of rough, fuzzy and near sets. They offer a continuation of a number of research streams which have grown out of the seminal work by Zdzislaw Pawlak during the first decade of the 21st century.

[1]  Ivo Düntsch,et al.  Approximation Operators in Qualitative Data Analysis , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[2]  Marcin Wolski,et al.  Perception and Classification. A Note on Near Sets and Rough Sets , 2010, Fundam. Informaticae.

[3]  James F. Peters,et al.  Nature-inspired framework for measuring visual image resemblance: A near rough set approach , 2011, Theor. Comput. Sci..

[4]  B. Davey,et al.  Introduction to Lattices and Order: Appendix B: further reading , 2002 .

[5]  Yiyu Yao,et al.  Covering based rough set approximations , 2012, Inf. Sci..

[6]  Peter F. Stadler,et al.  Genotype-Phenotype Maps , 2006 .

[7]  Yuhua Qian,et al.  Test-cost-sensitive attribute reduction , 2011, Inf. Sci..

[8]  Andrzej Janusz,et al.  Semantic Analytics of PubMed Content , 2011, USAB.

[9]  Andrzej Skowron,et al.  Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables , 1994, ISMIS.

[10]  Davide Ciucci,et al.  Approximation Algebra and Framework , 2009, Fundam. Informaticae.

[11]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[12]  Sankar K. Pal,et al.  Case generation using rough sets with fuzzy representation , 2004, IEEE Transactions on Knowledge and Data Engineering.

[13]  Andrzej Skowron,et al.  Rough Sets and Vague Concepts , 2004, Fundam. Informaticae.

[14]  A. Miné Weakly Relational Numerical Abstract Domains , 2004 .

[15]  Jouni Järvinen,et al.  Lattice Theory for Rough Sets , 2007, Trans. Rough Sets.

[16]  Andrzej Janusz,et al.  Clustering of Rough Set Related Documents with Use of Knowledge from DBpedia , 2011, RSKT.

[17]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[18]  Nagiza F. Samatova,et al.  A scalable, parallel algorithm for maximal clique enumeration , 2009, J. Parallel Distributed Comput..

[19]  Piotr Synak,et al.  Brighthouse: an analytic data warehouse for ad-hoc queries , 2008, Proc. VLDB Endow..

[20]  W. Caelli,et al.  Information Security Handbook , 1991 .

[21]  Davide Ciucci,et al.  Orthopairs: A Simple and Widely UsedWay to Model Uncertainty , 2011, Fundam. Informaticae.

[22]  Jarred Adam Ligatti,et al.  More Enforceable Security Policies , 2002 .

[23]  Achille C. Varzi Cut-offs and their Neighbors , 2003 .

[24]  Andrzej Skowron,et al.  Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data , 2012, Intelligent Systems Reference Library.

[25]  Arto Salomaa,et al.  Computation and Automata , 1984 .

[26]  Zoltán Csajbók,et al.  Simultaneous Anomaly and Misuse Intrusion Detections Based on Partial Approximative Set Theory , 2011, 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing.

[27]  Peter Willett,et al.  Readings in information retrieval , 1997 .

[28]  Andrzej Janusz,et al.  Dynamic Rule-Based Similarity Model for DNA Microarray Data , 2012, Trans. Rough Sets.

[29]  Zoltán Csajbók,et al.  Partial approximative set theory: A generalization of the rough set theory , 2010, 2010 International Conference of Soft Computing and Pattern Recognition.

[30]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[31]  Peter F. Smith,et al.  Vagueness: A Reader , 1999 .

[32]  Zoltán Ernő Csajbók On the partial approximation of sets , 2011 .

[33]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[34]  Davide Ciucci,et al.  A Unifying Abstract Approach for Rough Models , 2008, RSKT.

[35]  Robert Bembenik,et al.  Intelligent Tools for Building a Scientific Information Platform , 2013, Intelligent Tools for Building a Scientific Information Platform.

[36]  Ferenc Horváth,et al.  Fact sheet of the MÉTA database 1.2 , 2008 .

[37]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[38]  James F. Peters,et al.  Corrigenda and addenda: tolerance near sets and image correspondence , 2010, Int. J. Bio Inspired Comput..

[39]  Mihir K. Chakraborty,et al.  A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns , 2008 .

[40]  Xiangliang Zhang,et al.  Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data , 2006, Comput. Secur..

[41]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[42]  Zoltán Botta-Dukát,et al.  A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA) , 2007, Folia Geobotanica.

[43]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[44]  J. Meseguer,et al.  Security Policies and Security Models , 1982, 1982 IEEE Symposium on Security and Privacy.

[45]  Andrzej Janusz,et al.  Interactive Document Indexing Method Based on Explicit Semantic Analysis , 2012, RSCTC.

[46]  Dominik Slezak,et al.  JRS'2012 Data Mining Competition: Topical Classification of Biomedical Research Papers , 2012, RSCTC.

[47]  Guoyin Wang,et al.  Rough Set Based Solutions for Network Security , 2004, MSRAS.

[48]  Z. Molnár,et al.  Threatening factors encountered: Actual endangerment of the Hungarian (semi-)natural habitats , 2008 .

[49]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[51]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[52]  Kai Rannenberg,et al.  Information Technology Security Evaluation Criteria (ITSEC) - a Contribution to Vulnerability? , 1992, IFIP Congress.

[53]  William Zhu,et al.  Attribute reduction of data with error ranges and test costs , 2012, Inf. Sci..

[54]  R. Keefe Theories of vagueness , 2000 .

[55]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[56]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[57]  Rachid Beghdad Modelling and solving the intrusion detection problem in computer networks , 2004, Comput. Secur..

[58]  J. A. Pomykala SOME REMARKS ON APPROXIMATION , 1991 .

[59]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[60]  黄亚明 Lab Tests Online , 2010 .

[61]  Jouni Järvinen Properties of Rough Approximations , 2005, J. Adv. Comput. Intell. Intell. Informatics.

[62]  Eszter Illyés,et al.  A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING , 2007 .

[63]  P. Odifreddi Classical recursion theory , 1989 .

[64]  Mohua Banerjee,et al.  Algebras from Rough Sets , 2004, Rough-Neural Computing: Techniques for Computing with Words.

[65]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[66]  A. B. Sossinsky,et al.  Tolerance space theory and some applications , 1986 .

[67]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[68]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[69]  Andrzej Skowron,et al.  List of Works by Professor Zdzisław Pawlak (1926-2006) , 2013, Rough Sets and Intelligent Systems.

[70]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Yiyu Yao,et al.  Comparison of Rough-Set and Interval-Set Models for Uncertain Reasoning , 1996, Fundam. Informaticae.

[72]  Qingguo Li,et al.  Reduction about approximation spaces of covering generalized rough sets , 2010, Int. J. Approx. Reason..

[73]  G. Grätzer General Lattice Theory , 1978 .

[74]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[75]  Tamás Mihálydeák,et al.  General Tool-Based Approximation Framework Based on Partial Approximation of Sets , 2011, RSFDGrC.

[76]  Tamás Mihálydeák On Models of General Type-Theoretical Languages , 2010 .

[77]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[78]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[79]  Tsau Young Approximation Theories: Granular Computing vs Rough Sets , 2008 .

[80]  James F. Peters,et al.  Foundations of near sets , 2009, Inf. Sci..

[81]  Ross J. Anderson Security engineering - a guide to building dependable distributed systems (2. ed.) , 2001 .

[82]  Klaus Denecke,et al.  Galois connections and applications , 2004 .

[83]  Tsau Young Lin,et al.  Granular Computing: Practices, Theories, and Future Directions , 2009, Encyclopedia of Complexity and Systems Science.

[84]  Shusaku Tsumoto,et al.  Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence , 2013, Rough Sets and Intelligent Systems.

[85]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[86]  Fei-Yue Wang,et al.  Reduction and axiomization of covering generalized rough sets , 2003, Inf. Sci..

[87]  Matt Bishop,et al.  Computer Security: Art and Science , 2002 .

[88]  Andrzej Skowron,et al.  Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam - Volume 2 , 2013, Rough Sets and Intelligent Systems.

[89]  Didier Dubois,et al.  An information-based discussion of vagueness , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[90]  James F. Peters,et al.  Tolerance spaces: Origins, theoretical aspects and applications , 2012, Inf. Sci..

[91]  D. Dubois,et al.  An introduction to bipolar representations of information and preference , 2008 .

[92]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1986, 1986 IEEE Symposium on Security and Privacy.

[93]  James F. Peters,et al.  Tolerance near sets and image correspondence , 2009, Int. J. Bio Inspired Comput..

[94]  Zdzislaw Pawlak,et al.  Some Issues on Rough Sets , 2004, Trans. Rough Sets.

[95]  Ronen Feldman,et al.  The Text Mining Handbook: Index , 2006 .

[96]  Zoltán Csajbók Approximation of Sets Based on Partial Covering , 2013, Trans. Rough Sets.

[97]  Lech Polkowski A Set Theory for Rough Sets. Toward A Formal Calculus of Vague Statements , 2006, Fundam. Informaticae.

[98]  Jouni Järvinen Pawlak's Information Systems in Terms of Galois Connections and Functional Dependencies , 2007, Fundam. Informaticae.

[99]  Zdzislaw Pawlak,et al.  Vagueness - a Rough Set View , 1997, Structures in Logic and Computer Science.

[100]  Zoltán Csajbók,et al.  A security model for personal information security management based on partial approximative set theory , 2010, Proceedings of the International Multiconference on Computer Science and Information Technology.

[101]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[102]  G. Frege,et al.  Grundgesetze der Arithmetik : begriffsschriftlich abgeleitet , 2009 .