The history of polymer electrolytes

Abstract A brief historical survey of the conductive complexes formed between solvating molecules and metal salts is given here. The elucidation of the special conduction mechanism of these materials have been a challenging emulation for the scientific community. Yet, unsettled questions remain concerning the extend of dissociation and the transport numbers. These materials have up to now kept their promises for applications in batteries, and the technological implications of their use are now generally accepted and also apply to the newly considered gel electrolytes which are polymer-immobilized non-protic liquids.

[1]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[2]  C. Pedersen Macrocyclic polyether sulfides , 1971 .

[3]  C. Chiang,et al.  Polyethylenimine-sodium iodide complexes , 1985 .

[4]  M. Ratner,et al.  Conformation and Ion‐Transport Models for the Structure and Ionic Conductivity in Complexes of Polyethers with Alkali Metal Salts , 1982 .

[5]  T. Jacobsen,et al.  Conductivity, charge transfer and transport number—an ac-investigation of the polymer electrolyte LiSCN-poly(ethyleneoxide) , 1982 .

[6]  P. Bruce,et al.  Preparation and characterisation of PEOHg(ClO4)2 complexes and some thoughts on ion transport in polymer electrolytes , 1988 .

[7]  M. Barreira,et al.  Transport properties of molten tetra-alkylammonium picrates—II conductivity , 1976 .

[8]  D. Abraham,et al.  Rheological characterization of blends of low density with linear low density polyethylene using a torque rheometer , 1990 .

[9]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[10]  F. Barreira,et al.  Transport properties of molten tetra-alkylammonium picrates—I. Viscosity , 1976 .

[11]  M. Armand,et al.  Assessment of polymer-electrolyte batteries for EV and ambient temperature applications , 1985 .

[12]  Ratner,et al.  Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. , 1985, Physical review. B, Condensed matter.

[13]  M. Ratner,et al.  Ion Transport in the Polymer Electrolytes Formed Between Poly(ethylene succinate) and Lithium Tetrafluoroborate , 1984 .

[14]  P. Hagenmuller,et al.  Advances on fluorine ion conductors, basic and applied research , 1983 .

[15]  G. G. Cameron,et al.  Ion transport in polymer electrolytes , 1989 .

[16]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[17]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[18]  Harry R. Allcock,et al.  Polyphosphazene solid electrolytes , 1984 .

[19]  Teruo Miyamoto,et al.  Free‐volume model for ionic conductivity in polymers , 1973 .

[20]  B. Owens,et al.  Performance of polymer-electrolyte cells at +25 to +100 C. Technical report , 1987 .

[21]  J. Smid,et al.  Conductivities of solid polymer electrolyte complexes of alkali salts with polymers of methoxypolyethyleneglycol methacrylates , 1984 .

[22]  Colin A. Vincent,et al.  An investigation of the conducting species in polymer electrolytes , 1986 .

[23]  Brian C. H. Steele,et al.  Mixed polyether lithium-ion conductors , 1984 .

[24]  A. Gandini,et al.  Ionic conductivity of polyether-polyurethane networks containing alkali metal salts: an analysis of the concentration effect , 1984 .

[25]  E. Tsuchida,et al.  Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity , 1985 .

[26]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[27]  E. Tsuchida,et al.  Ionically high conductive solid electrolytes composed of graft copolymer-lithium salt hybrids , 1985 .

[28]  C. Booth,et al.  The Effect of Oxyethylene Sequence Length on the Properties of Poly [ oxymethylene ‐ oligo ( oxyethylene ) ] / LiClO4 Polymer Electrolytes , 1992 .

[29]  Brian C. H. Steele,et al.  Poly(ethylene oxide) electrolytes for operation at near room temperature , 1985 .

[30]  N. Ogata,et al.  Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate , 1984 .

[31]  M. Armand,et al.  COMPARATIVE ELECTROCHEMICAL STUDY OF NEW POLY(OXYETHYLENE)-LI SALT COMPLEXES , 1993 .

[32]  N. Ogata,et al.  Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyester and alkali metal thiocyanate , 1986 .

[33]  D. Shriver,et al.  A new class of cation conductors: polyphosphazene sulfonates , 1988 .

[34]  D. J. Bannister,et al.  Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3 , 1984 .

[35]  J. Prud'homme,et al.  Thermal properties of poly(ethylene oxide) complexed with sodium thiocyanate and potassium thiocyanate , 1987 .

[36]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[37]  C. Vincent,et al.  The effect of molecular weight on cation mobility in polymer electrolytes , 1993 .

[38]  M. Armand,et al.  AMINOSILS: New solid state protonic materials by the sol-gel process , 1988 .

[39]  Yozo Chatani,et al.  Crystal structure of poly(ethylene oxide) ― sodium iodide complex , 1987 .