Focusing qualitative simulation using temporal logic: theoretical foundations

We illustrate TeQsim, a qualitative simulator for continuous dynamical systems that combines the expressive power of qualitative differential equations with temporal logic to constrain and refine the resulting predicted behaviors. Temporal logic is used to specify constraints that restrict the simulation to a region of the state space and to specify trajectories for input variables. A propositional linear‐time temporal logic is adopted, which is extended to a three valued logic that allows a formula to be conditionally entailed when quantitative information specified in the formula can be applied to a behavior to refine it. We present a formalization of the logic with correctness and completeness results for the adopted model checking algorithm. We show an example of the simulation of a non‐autonomous dynamical system and illustrate possible application tasks, ranging from simulation to monitoring and control of continuous dynamical systems, where TeQsim can be applied.

[1]  Giorgio Brajnik Statistical properties of qualitative behaviors , 2003 .

[2]  Giorgio Brajnik,et al.  Trajectory Constraints in Qualitative Simulation , 1996, AAAI/IAAI, Vol. 2.

[3]  Giorgio Brajnik,et al.  Temporal Constraints on Trajectories in Qualitative Simulation , 1996 .

[4]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[5]  Thomas A. Henzinger,et al.  Half-order modal logic: how to prove real-time properties , 1990, PODC '90.

[6]  A. John Mallinckrodt,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, at - Automatisierungstechnik.

[7]  R. Cleaveland,et al.  Eecient On-the-fly Model Checking for Ctl , 1995 .

[8]  Benjamin Kuipers,et al.  Using Incomplete Quantitative Knowledge In Qualitative Reasoning , 1988, AAAI.

[9]  Benjamin Kuipers,et al.  Numerical Behavior Envelopes for Qualitative Models , 1993, AAAI.

[10]  Girish Bhat,et al.  Efficient on-the-fly model checking for CTL , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[11]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[12]  Benjamin Shults,et al.  Qualitative Simulation and Temporal Logic: Proving Properties of Continuous Systems , 1996 .

[13]  W. M. Wonham,et al.  Control problems in a temporal logic framework , 1986 .

[14]  Benjamin Kuipers,et al.  Proving Properties of Continuous Systems: Qualitative Simulation and Temporal Logic , 1997, Artif. Intell..

[15]  Fahiem Bacchus,et al.  Using temporal logic to control search in a forward chaining planner , 1996 .

[16]  Hanqi Zhuang,et al.  Real-time eye feature tracking from a video image sequence using Kalman filter , 1994, Conference Record Southcon.

[17]  Dan Ionescu,et al.  Optimal supervision of discrete event systems in a temporal logic framework , 1995, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  D. DeCoste Goal-directed qualitative reasoning with partial states , 1994 .

[19]  Fahiem Bacchus,et al.  Planning for temporally extended goals , 1996, Annals of Mathematics and Artificial Intelligence.

[20]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[21]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[22]  Michel Barbeau,et al.  Synthesizing Plant Controllers Using Real-time Goals , 1995, IJCAI.