Language and Automata Theory and Applications

I would like to report on some significant progress in the study of the exact complexity of counting problems. Specifically I will describe the classification program of counting complexity of locally specified problems. This classification program is advanced in three interrelated frameworks: Graph Homomorphisms, Counting CSP, and Holant Problems. In each formulation, complexity dichotomy theorems have been achieved which classify every problem in a given class to be either solvable in polynomial time or #P-hard.

[1]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[2]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[3]  Sven Sandberg,et al.  Homing and Synchronizing Sequences , 2004, Model-Based Testing of Reactive Systems.

[4]  Colin de la Higuera Grammatical Inference: Informed learners , 2010 .

[5]  Joachim Niehren,et al.  Streaming tree automata , 2008, Inf. Process. Lett..

[6]  Tayssir Touili,et al.  Antichain-Based Universality and Inclusion Testing over Nondeterministic Finite Tree Automata , 2008, CIAA.

[7]  Felix Klaedtke,et al.  Ramsey Goes Visibly Pushdown , 2013, ICALP.

[8]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[9]  A. N. Trahtman,et al.  Modifying the upper bound on the length of minimal synchronizing word , 2011, FCT 2011.

[10]  Ryo Yoshinaka,et al.  On the Parameterised Complexity of Learning Patterns , 2011, ISCIS.

[11]  Jean-François Raskin,et al.  Antichain Algorithms for Finite Automata , 2010, TACAS.

[12]  Parosh Aziz Abdulla,et al.  When Simulation Meets Antichains , 2010, TACAS.

[13]  Leonard Pitt,et al.  The minimum consistent DFA problem cannot be approximated within any polynomial , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[14]  Dimiter Vakarelov,et al.  Propositional dynamic logic with recursive programs , 1988 .

[15]  Javier Esparza,et al.  Efficient Algorithms for Model Checking Pushdown Systems , 2000, CAV.

[16]  Martin Kutrib,et al.  Descriptional and computational complexity of finite automata - A survey , 2011, Inf. Comput..

[17]  Claire David,et al.  A Direct Translation from XPath to Nondeterministic Automata , 2011, AMW.

[18]  Ludwig Staiger The Entropy of Lukasiewicz-Languages , 2001, Developments in Language Theory.

[19]  Thomas W. Reps,et al.  OpenNWA: A Nested-Word Automaton Library , 2012, CAV.

[20]  Mahesh Viswanathan,et al.  Visibly pushdown automata for streaming XML , 2007, WWW '07.

[21]  J. Taylor,et al.  Switching and finite automata theory, 2nd ed. , 1980, Proceedings of the IEEE.

[22]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[23]  David Lee,et al.  Testing Finite-State Machines: State Identification and Verification , 1994, IEEE Trans. Computers.

[24]  Derick Wood,et al.  Regular tree and regular hedge languages over unranked alphabets , 2001 .

[25]  Nguyen Van Tang A Tighter Bound for the Determinization of Visibly Pushdown Automata , 2009, INFINITY.

[26]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[27]  Oscar H. Ibarra,et al.  A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems , 2003, ICALP.

[28]  Hitoshi Ohsaki,et al.  On Model Checking for Visibly Pushdown Automata , 2012, LATA.

[29]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.