DFF, a Heterodimeric Protein That Functions Downstream of Caspase-3 to Trigger DNA Fragmentation during Apoptosis

We have identified and purified from HeLa cytosol a protein that induces DNA fragmentation in coincubated nuclei after it is activated by caspase-3. This protein, designated DNA Fragmentation Factor (DFF), is a heterodimer of 40 kDa and 45 kDa subunits. The amino acid sequence of the 45 kDa subunit, determined from its cDNA sequence, reveals it to be a novel protein. Caspase-3 cleaves the 45 kDa subunit at two sites to generate an active factor that produces DNA fragmentation without further requirement for caspase-3 or other cytosolic proteins. In cells undergoing apoptosis, the 45 kDa subunit is cleaved in the same pattern as it is cleaved by caspase-3 in vitro. These data delineate a direct signal transduction pathway during apoptosis: caspase-3 to DFF to DNA fragmentation.

[1]  P. Branton,et al.  Bcl-2 and adenovirus E1B 19 kDA protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. , 1996, Oncogene.

[2]  M. Hayden,et al.  Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract , 1996, Nature Genetics.

[3]  X. Wang,et al.  Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. , 1996, The EMBO journal.

[4]  X. Wang,et al.  Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. , 1993, The Journal of biological chemistry.

[5]  G. Kroemer,et al.  Bcl-2 inhibits the mitochondrial release of an apoptogenic protease , 1996, The Journal of experimental medicine.

[6]  J. Cidlowski,et al.  Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. , 1991, The Journal of biological chemistry.

[7]  H. Horvitz,et al.  The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. , 1996, Genes & development.

[8]  J. Tschopp,et al.  Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). , 1993, The EMBO journal.

[9]  S. Korsmeyer,et al.  Fas-induced Activation of the Cell Death-related Protease CPP32 Is Inhibited by Bcl-2 and by ICE Family Protease Inhibitors* , 1996, The Journal of Biological Chemistry.

[10]  A. Admon,et al.  SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene , 1993, Cell.

[11]  G. Kroemer,et al.  Mitochondrial control of nuclear apoptosis , 1996, The Journal of experimental medicine.

[12]  Patrick R. Griffin,et al.  Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis , 1995, Nature.

[13]  Junying Yuan,et al.  Human ICE/CED-3 Protease Nomenclature , 1996, Cell.

[14]  D. Green,et al.  The cytotoxic cell protease granzyme B initiates apoptosis in a cell‐free system by proteolytic processing and activation of the ICE/CED‐3 family protease, CPP32, via a novel two‐step mechanism. , 1996, The EMBO journal.

[15]  A. Wyllie,et al.  The genetic regulation of apoptosis. , 1995, Current opinion in genetics & development.

[16]  K O'Rourke,et al.  Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. , 1995, Cell.

[17]  Matthias Mann,et al.  FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex , 1996, Cell.

[18]  Dean P. Jones,et al.  Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked , 1997, Science.

[19]  H. Steller,et al.  DCP-1, a Drosophila Cell Death Protease Essential for Development , 1997, Science.

[20]  G. Salvesen,et al.  FLICE Induced Apoptosis in a Cell-free System , 1997, The Journal of Biological Chemistry.

[21]  E. Alnemri,et al.  CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. , 1994, The Journal of biological chemistry.

[22]  A. Chinnaiyan,et al.  Molecular Ordering of the Cell Death Pathway , 1996, The Journal of Biological Chemistry.

[23]  X. Liu,et al.  Purification and Characterization of an Interleukin-1β-converting Enzyme Family Protease That Activates Cysteine Protease P32 (CPP32)* , 1996, The Journal of Biological Chemistry.

[24]  D. McConkey Calcium-dependent, Interleukin 1β-converting Enzyme Inhibitor-insensitive Degradation of Lamin B1 and DNA Fragmentation in Isolated Thymocyte Nuclei* , 1996, The Journal of Biological Chemistry.

[25]  Emad S. Alnemri,et al.  Activation of a CrmA-insensitive, p35-sensitive Pathway in Ionizing Radiation-induced Apoptosis* , 1997, The Journal of Biological Chemistry.

[26]  L. Nikonova,et al.  Properties of some nuclear nucleases of rat thymocytes and their changes in radiation-induced apoptosis. , 1993, European journal of biochemistry.

[27]  D. Green,et al.  The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis , 1997, Science.

[28]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[29]  Keisuke Kuida,et al.  Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice , 1996, Nature.

[30]  M. Raff,et al.  Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death , 1996, The Journal of cell biology.

[31]  M. Brown,et al.  Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. , 1993, The Journal of biological chemistry.

[32]  E. Solary,et al.  Pivotal role of a DEVD‐sensitive step in etoposide‐induced and Fas‐mediated apoptotic pathways. , 1996, The EMBO journal.

[33]  D. Chan,et al.  DNA‐dependent protein kinase catalytic subunit: a target for an ICE‐like protease in apoptosis. , 1996, The EMBO journal.

[34]  N. Thornberry,et al.  Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death , 1996, The Journal of experimental medicine.

[35]  S. Orrenius,et al.  CPP32/Apopain Is a Key Interleukin 1 Converting Enzyme-like Protease Involved in Fas-mediated Apoptosis (*) , 1996, The Journal of Biological Chemistry.

[36]  Y. Tsujimoto,et al.  Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis. , 1996, Cancer research.

[37]  Muneesh Tewari,et al.  Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase , 1995, Cell.

[38]  S. Nagata,et al.  Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis , 1996, Nature.

[39]  E. Alnemri,et al.  Activation of the CPP32 protease in apoptosis induced by 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents. , 1996, Blood.

[40]  T. Ley,et al.  Cleavage of CPP32 by Granzyme B Represents a Critical Role for Granzyme B in the Induction of Target Cell DNA Fragmentation* , 1996, The Journal of Biological Chemistry.

[41]  N. Davidson,et al.  Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. , 1993, Cancer research.

[42]  C. Borner,et al.  Bcl-2 overexpression blocks activation of the death protease CPP32/Yama/apopain. , 1996, Biochemical and biophysical research communications.

[43]  G. Salvesen,et al.  Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[45]  E. Wagner,et al.  Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. , 1995, Genes & development.

[46]  G. Cooper,et al.  Activation of the CPP32 Apoptotic Protease by Distinct Signaling Pathways with Differential Sensitivity to Bcl-xL* , 1996, The Journal of Biological Chemistry.

[47]  E. White,et al.  Life, death, and the pursuit of apoptosis. , 1996, Genes & development.

[48]  David Wallach,et al.  Involvement of MACH, a Novel MORT1/FADD-Interacting Protease, in Fas/APO-1- and TNF Receptor–Induced Cell Death , 1996, Cell.

[49]  D. Danley,et al.  D4-GDI, a Substrate of CPP32, Is Proteolyzed during Fas-induced Apoptosis (*) , 1996, Journal of Biological Chemistry.

[50]  A. Wyllie Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation , 1980, Nature.

[51]  K. Bhalla,et al.  Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. , 1996, Cancer research.

[52]  C. Slaughter,et al.  Purification of an Interleukin-1 Converting Enzyme-related Cysteine Protease That Cleaves Sterol Regulatory Element-binding Proteins between the Leucine Zipper and Transmembrane Domains (*) , 1995, The Journal of Biological Chemistry.