Semiclassical energy level statistics in the transition region between integrability and chaos: transition from Brody-like to Berry-Robnik behaviour

We study the energy level statistics of the generic Hamiltonian systems in the transition region between integrability and chaos and present the theoretical and numerical evidence that in the ultimate (far) semiclassical limit the Berry-Robnik (1984) approach is the asymptotically exact theory. However, before reaching that limit, one observes phenomenologically a quasi-universal behaviour characterized by the fractional power-law level repulsion and globally quite well described by the Brody (or Izrailev) distribution. We offer theoretical arguments explaining this extremely slow transition and demonstrate it numerically in improved statistics of the Robnik billiard and in the standard (Chirikov) map on a torus.

[1]  Izrailev Limiting quasienergy statistics for simple quantum systems. , 1986, Physical review letters.

[2]  F. Izrailev Intermediate statistics of the quasi-energy spectrum and quantum localisation of classical chaos , 1989 .

[3]  T. Prosen,et al.  Energy level statistics and localization in sparsed banded random matrix ensemble , 1993 .

[4]  Marko Robnik,et al.  Classical dynamics of a family of billiards with analytic boundaries , 1983 .

[5]  Bruno Eckhardt,et al.  Quantum mechanics of classically non-integrable systems , 1988 .

[6]  Marko Robnik,et al.  Quantising a generic family of billiards with analytic boundaries , 1984 .

[7]  F. Haake Quantum signatures of chaos , 1991 .

[8]  Ganesan,et al.  Quantum chaos of the hydrogen atom in a generalized van der Waals potential. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[10]  Baowen Li,et al.  Statistical properties of high-lying chaotic eigenstates , 1994, chao-dyn/9501003.

[11]  H. Koch A free energy bound for the Hopfield model , 1993 .

[12]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Hans-Dieter Meyer,et al.  Theory of the Liapunov exponents of Hamiltonian systems and a numerical study on the transition from regular to irregular classical motion , 1986 .

[14]  O. Bohigas,et al.  Manifestations of classical phase space structures in quantum mechanics , 1993 .

[15]  J. Verbaarschot,et al.  Fluctuations of quantum spectra and their semiclassical limit in the transition between order and chaos , 1985 .

[16]  Marko Robnik,et al.  Energy level statistics in the transition region between integrability and chaos , 1993 .

[17]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[18]  M. Berry,et al.  Semiclassical level spacings when regular and chaotic orbits coexist , 1984 .

[19]  I. C. Percival,et al.  Regular and irregular spectra , 1973 .

[20]  Y. Oono,et al.  Walks, trials and polymers with loops , 1984 .

[21]  T. A. Brody A statistical measure for the repulsion of energy levels , 1973 .

[22]  Felix M. Izrailev,et al.  Simple models of quantum chaos: Spectrum and eigenfunctions , 1990 .

[23]  J. Verbaarschot,et al.  Quantum spectra and transition from regular to chaotic classical motion , 1984 .

[24]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[25]  H. Meyer,et al.  CORRIGENDUM: On the connection between irregular trajectories and the distribution of quantum level spacings , 1984 .

[26]  T. Prosen,et al.  Numerical demonstration of the Berry-Robnik level spacing distribution , 1994 .

[27]  Wintgen,et al.  Spectral properties of strongly perturbed Coulomb systems: Fluctuation properties. , 1989, Physical review. A, General physics.

[28]  H. Bruus,et al.  Chaos and fluctuations in quantum dots , 1993 .

[29]  R. Markarian New ergodic billiards: exact results , 1993 .

[30]  Friedrich,et al.  Classical and quantum-mechanical transition between regularity and irregularity in a Hamiltonian system. , 1987, Physical review. A, General physics.