Core shell excitation of 2-propenal (acrolein) at the O 1s and C 1s edges: An experimental and ab initio study

The carbon and oxygen K-shell spectra of gaseous 2-propenal (acrolein) have been measured using the inner-shell electron energy loss spectroscopy method. Large scale ab initio configuration interaction calculations have been carried out to enable firm assignments of the observed bands. The overall shapes of the spectra are similar to previous low resolution monolayer and multilayer phases NEXAFS spectra recorded by photoabsorption of synchrotron radiation, but the spectral bands are much better resolved than the earlier ones. The spectra are dominated by excitation of π* type states and by interaction between the C=C and C=O π* orbitals.

[1]  V. P. Gupta,et al.  Semi-empirical calculation and normal coordinate study of the conformation and electronic and vibrational spectra of acrolein , 1997 .

[2]  Kevin W. Paulisse,et al.  Vibronic spectroscopy and lifetime of S1 acrolein , 2000 .

[3]  J. Heinesch,et al.  A position-sensitive electron detector for use in electron spectroscopy , 2002 .

[4]  H. Günthard,et al.  S-trans and S-cis acrolein: trapping from thermal molecular beams and uv-induced isomerization in argon matrices , 1980 .

[5]  R. Wayne,et al.  The reactions of atomic chlorine with acrolein, methacrolein and methyl vinyl ketone , 2001 .

[6]  C. E. Brion,et al.  Reference energies for inner shell electron energy-loss spectroscopy , 1984 .

[7]  F. Currell,et al.  A new technique for collecting excitation functions for electron spectrometers fitted with a position sensitive detector , 1992 .

[8]  F. Zaera,et al.  Double-bond activation in unsaturated aldehydes: conversion of acrolein to propene and ketene on Pt(111) surfaces , 1999 .

[9]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[10]  A. Walsh The absorption spectra of acrolein, crotonaldehyde and mesityl oxide in the vacuum ultra-violet , 1945 .

[11]  M. Piancastelli The neverending story of shape resonances , 1999 .

[12]  L. Butler,et al.  Emission spectroscopy of the predissociative excited state dynamics of acrolein, acrylic acid, and acryloyl chloride at 199 nm , 1995 .

[13]  J. Flament,et al.  Re-analysis of the K-shell spectrum of benzene , 2000 .

[14]  F. Zaera,et al.  Adsorption and thermal chemistry of acrolein and crotonaldehyde on Pt(111) surfaces , 1999 .

[15]  K. Itoh,et al.  Infra-red reflection absorption spectroscopic study on adsorption structures of acrolein on polycrystalline gold and Au(111) surfaces under ultra-high vacuum conditions , 1998 .

[16]  Regio- and stereoselectivity in the Diels–Alder reaction of vinylallenes with acrolein: an ab initio study , 1999 .

[17]  C. Hannay,et al.  Inner-shell excitation of monocyanoethylene, trans-dicyanoethylene, and allylcyanide by electron energy loss spectroscopy , 1997 .

[18]  R. Cimiraglia,et al.  Multireference perturbation CI I. Extrapolation procedures with CAS or selected zero-order spaces , 1997 .

[19]  C. Hannay,et al.  A position-sensitive detector mounted on an inner-shell electron energy-loss spectrometer , 1995 .

[20]  G. Tourillon,et al.  Adsorption of some substituted ethylene molecules on Pt(111) at 95 K Part 1: NEXAFS, XPS and UPS studies , 1996 .

[21]  G. Tourillon,et al.  Adsorption of some substituted ethylene molecules on Pt(111) at 95 K. II. A FT-RAIRS study , 1996 .

[22]  A. Bauder,et al.  Molecular structure of s-cis- and s-trans-acrolein determined by microwave spectroscopy , 1984 .

[23]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[24]  C. Costain,et al.  Microwave Spectrum and Molecular Structure of trans‐Acrolein , 1966 .

[25]  R. Cimiraglia Second order perturbation correction to CI energies by use of diagrammatic techniques: An improvement to the CIPSI algorithm , 1985 .

[26]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[27]  G. Vergoten,et al.  The SPASIBA force field of aldehydes. Part II: structure and vibrational wavenumbers of ethandial, propenal and 2-methylpropenal , 1999 .

[28]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[29]  W. Irvine,et al.  Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[30]  Nenner,et al.  Single- and multiple-electron effects in the Si 1s photoabsorption spectra of SiX4 (X=H,D,F,Cl,Br,Ch3,C2H5,OCH3,OC2H5) molecules: Experiment and theory. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[31]  A. Modelli,et al.  X-ray photoelectron spectra of 2-propenal and related compounds , 1982 .

[32]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[33]  W. Fang A CASSCF Study on Photodissociation of Acrolein in the Gas Phase , 1999 .

[34]  Mark S. Gordon,et al.  Approximate second order method for orbital optimization of SCF and MCSCF wavefunctions , 1997 .

[35]  C. Bock,et al.  An ab initio prediction of structures and vibrational frequencies of high-energy rotamers of glyoxal and acrolein , 1988 .

[36]  D. Shallcross,et al.  A kinetic study of the reactions of NO3 with methyl vinyl ketone, methacrolein, acrolein, methyl acrylate and methyl methacrylate , 1999 .