Scanning and tracking with independent cameras—a biologically motivated approach based on model predictive control

Abstract This paper presents a framework for visual scanning and target tracking with a set of independent pan-tilt cameras. The approach is systematic and based on Model Predictive Control (MPC), and was inspired by our understanding of the chameleon visual system. We make use of the most advanced results in the MPC theory in order to design the scanning and tracking controllers. The scanning algorithm combines information about the environment and a model for the motion of the target to perform optimal scanning based on stochastic MPC. The target tracking controller is a switched control combining smooth pursuit and saccades. Min-Max and minimum-time MPC theory is used for the design of the tracking control laws. We make use of the observed chameleon’s behavior to guide the scanning and the tracking controller design procedures, the way they are combined together and their tuning. Finally, simulative and experimental validation of the approach on a robotic chameleon head composed of two independent Pan-Tilt cameras is presented.

[1]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[2]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[3]  L. Stone Theory of Optimal Search , 1975 .

[4]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[5]  W. Brogan Modern Control Theory , 1971 .

[6]  P. Aerts,et al.  The mechanics of prey prehension in chameleons. , 2000, The Journal of experimental biology.

[7]  James N. Eagle The Optimal Search for a Moving Target When the Search Path Is Constrained , 1984, Oper. Res..

[8]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[9]  Johan L. van Leeuwen,et al.  Evidence for an elastic projection mechanism in the chameleon tongue , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Alexander Zelinsky,et al.  Advancing Active Vision Systems by Improved Design and Control , 2000, ISER.

[11]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[12]  Tomonari Furukawa,et al.  Multi-vehicle Bayesian Search for Multiple Lost Targets , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[13]  Ellis R. Loew,et al.  The cone photoreceptors and visual pigments of chameleons , 2005, Journal of Comparative Physiology A.

[14]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[16]  Matthias Ott,et al.  A negatively powered lens in the chameleon , 1995, Nature.

[17]  Alexandre Bernardino,et al.  Binocular tracking: integrating perception and control , 1999, IEEE Trans. Robotics Autom..

[18]  Hugh F. Durrant-Whyte,et al.  Process model, constraints, and the coordinated search strategy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  M. Ott,et al.  Chameleons have independent eye movements but synchronise both eyes during saccadic prey tracking , 2001, Experimental Brain Research.

[20]  Dan Bugajski,et al.  Dynamic inversion: an evolving methodology for flight control design , 1994 .

[21]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[22]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[23]  Minoru Asada,et al.  Adaptive binocular visual servoing for independently moving target tracking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Stefan Schaal,et al.  Overt visual attention for a humanoid robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[25]  Gamini Dissanayake,et al.  Optimal search for multiple targets in a built environment , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[27]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[28]  John D. Pettigrew,et al.  Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia) , 1999, Current Biology.

[29]  W. Kirmse,et al.  Binocular vision and accommodation in prey-catching chameleons , 1998, Journal of Comparative Physiology A.

[30]  Martha Flanders,et al.  Visually guided head movement in the African chameleon , 1985, Vision Research.

[31]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[32]  A. Bernardino,et al.  Binocular Visual Tracking : Integration of Perception and Control , 1999 .

[33]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[34]  J A Armengol,et al.  The photoreceptors of the chameleon retina (Chamaleo chamaleo). A Golgi study. , 1988, Journal fur Hirnforschung.

[35]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[36]  James N. Eagle,et al.  An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem , 1990, Oper. Res..

[37]  M. Morari,et al.  Robust Receding Horizon Control - analysis & synthesis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[38]  LINDESAY HARKNESS,et al.  Chameleons use accommodation cues to judge distance , 1977, Nature.

[39]  William L. Brogan,et al.  Modern control theory (3rd ed.) , 1991 .