AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding

Distant supervision has been widely used in current systems of fine-grained entity typing to automatically assign categories (entity types) to entity mentions. However, the types so obtained from knowledge bases are often incorrect for the entity mention’s local context. This paper proposes a novel embedding method to separately model “clean” and “noisy” mentions, and incorporates the given type hierarchy to induce loss functions. We formulate a joint optimization problem to learn embeddings for mentions and typepaths, and develop an iterative algorithm to solve the problem. Experiments on three public datasets demonstrate the effectiveness and robustness of the proposed method, with an average 15% improvement in accuracy over the next best compared method1.

[1]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[2]  Heng Ji,et al.  Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding , 2016, KDD.

[3]  Ben Taskar,et al.  Learning from Partial Labels , 2011, J. Mach. Learn. Res..

[4]  Qiaozhu Mei,et al.  PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks , 2015, KDD.

[5]  Clare R. Voss,et al.  ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering , 2015, KDD.

[6]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[7]  Heng Ji,et al.  Refining Event Extraction through Cross-Document Inference , 2008, ACL.

[8]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[9]  Daniel Gillick,et al.  A New Entity Salience Task with Millions of Training Examples , 2014, EACL.

[10]  Xiang Ren,et al.  Automatic Entity Recognition and Typing in Massive Text Corpora , 2016, WWW.

[11]  Satoshi Sekine,et al.  A survey of named entity recognition and classification , 2007 .

[12]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[13]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[14]  Gerhard Weikum,et al.  HYENA: Hierarchical Type Classification for Entity Names , 2012, COLING.

[15]  Daniel S. Weld,et al.  Fine-Grained Entity Recognition , 2012, AAAI.

[16]  Min-Ling Zhang,et al.  Disambiguation-Free Partial Label Learning , 2017, IEEE Transactions on Knowledge and Data Engineering.

[17]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[18]  Rich Caruana,et al.  Classification with partial labels , 2008, KDD.

[19]  Yizhou Sun,et al.  Personalized entity recommendation: a heterogeneous information network approach , 2014, WSDM.

[20]  Oren Etzioni,et al.  No Noun Phrase Left Behind: Detecting and Typing Unlinkable Entities , 2012, EMNLP.

[21]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[22]  Hiroshi Nakagawa,et al.  Reducing Wrong Labels in Distant Supervision for Relation Extraction , 2012, ACL.

[23]  Mitchell P. Marcus,et al.  OntoNotes : A Large Training Corpus for Enhanced Processing , 2017 .

[24]  Fernando Pereira,et al.  Wikilinks: A Large-scale Cross-Document Coreference Corpus Labeled via Links to Wikipedia , 2012 .

[25]  Oren Etzioni,et al.  Open question answering over curated and extracted knowledge bases , 2014, KDD.

[26]  Dan Roth,et al.  Design Challenges and Misconceptions in Named Entity Recognition , 2009, CoNLL.

[27]  Jason Weston,et al.  WSABIE: Scaling Up to Large Vocabulary Image Annotation , 2011, IJCAI.

[28]  Nevena Lazic,et al.  Context-Dependent Fine-Grained Entity Type Tagging , 2014, ArXiv.

[29]  Eric P. Xing,et al.  Entity Hierarchy Embedding , 2015, ACL.

[30]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[31]  Pu-Jen Cheng,et al.  Entity-driven Type Hierarchy Construction for Freebase , 2015, WWW.

[32]  Hong Sun,et al.  A Hybrid Neural Model for Type Classification of Entity Mentions , 2015, IJCAI.

[33]  Nevena Lazic,et al.  Embedding Methods for Fine Grained Entity Type Classification , 2015, ACL.

[34]  Gerhard Weikum,et al.  FINET: Context-Aware Fine-Grained Named Entity Typing , 2015, EMNLP.