Log-PCA versus Geodesic PCA of histograms in the Wasserstein space
暂无分享,去创建一个
Nicolas Papadakis | Marco Cuturi | Vivien Seguy | J'er'emie Bigot | Elsa Cazelles | Marco Cuturi | Jérémie Bigot | N. Papadakis | Elsa Cazelles | Vivien Seguy
[1] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[2] L. Ambrosio,et al. Gradient flows with metric and differentiable structures, and applications to the Wasserstein space , 2004 .
[3] Antonio Irpino,et al. Dimension Reduction Techniques for Distributional Symbolic Data , 2013, IEEE Transactions on Cybernetics.
[4] Marco Cuturi,et al. Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric , 2015, NIPS.
[5] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[6] Yann LeCun,et al. The mnist database of handwritten digits , 2005 .
[7] C. Villani. Topics in Optimal Transportation , 2003 .
[8] Jérémie Bigot,et al. Geodesic PCA in the Wasserstein space by Convex PCA , 2017 .
[9] Antonin Chambolle,et al. On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..
[10] Gustavo K. Rohde,et al. A Linear Optimal Transportation Framework for Quantifying and Visualizing Variations in Sets of Images , 2012, International Journal of Computer Vision.
[11] P. Thomas Fletcher,et al. Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.
[12] H. Whitney. Geometric Integration Theory , 1957 .
[13] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[14] L. Evans. Measure theory and fine properties of functions , 1992 .
[15] Søren Hauberg,et al. Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations , 2010, ECCV.
[16] Thomas Brox,et al. iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..
[17] Dirk A. Lorenz,et al. An Inertial Forward-Backward Algorithm for Monotone Inclusions , 2014, Journal of Mathematical Imaging and Vision.
[18] H. Muller,et al. Functional data analysis for density functions by transformation to a Hilbert space , 2016, 1601.02869.
[19] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[20] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .