Direction‐finding measurements of Jovian low‐frequency radio components by Juno near Perijove 1

With the aid of the radio and plasma wave (Waves) instrument onboard the Juno spacecraft, the first scientific close encounter to Jupiter (Perijove 1) of Juno led to an opportunity to perform direction finding measurements of the intense Jovian broadband kilometric (bKOM) radiation at 10 to 142 kHz, two escaping continuum radiation (ECR) events at 9 to 22 kHz, and two narrowband kilometric (nKOM) radiation events at 45–112 kHz. We conclude that the northern bKOM radio sources are localized on M-shell=50–60 field lines where M-shell is similar to L-shell for non-dipolar fields. The beam cone half-angle varies from 40∘ to 55∘. By intersecting the wave k vector with the Jovian centrifugal equator, two ECR sources are located inside and outside of 11–12 RJ, and two nKOM sources are found between 11 and 20 RJ. These source frequencies and locations can be used for plasma diagnostics in Jupiter's inner magnetosphere.

[1]  M. L. Kaiser,et al.  Radio Jupiter after Voyager: An overview of the planetary radio astronomy observations , 1981 .

[2]  P. Louarn,et al.  Plasma measurements in the Jovian polar region with Juno/JADE , 2017 .

[3]  Travis W. Hill,et al.  Configuration of the Jovian magnetosphere , 1974 .

[4]  G. Hospodarsky Spaced‐based search coil magnetometers , 2016 .

[5]  M. Goldstein,et al.  A theory of the Io phase asymmetry of the Jovian decametric radiation , 1982 .

[6]  F. Bagenal,et al.  Flow of mass and energy in the magnetospheres of Jupiter and Saturn , 2011 .

[7]  Donald A. Gurnett,et al.  Direction-funding measurements of auroral kilometric radiation , 1974 .

[8]  R. Schnurr,et al.  The Juno Magnetic Field Investigation , 2017 .

[9]  D. Gurnett,et al.  Low frequency radio emissions from Jupiter: Jovian kilometric radiation , 1979 .

[10]  Emma J. Bunce,et al.  A note on the vector potential of Connerney et al.'s model of the equatorial current sheet in Jupiter's magnetosphere , 2001 .

[11]  D. Gurnett,et al.  Galileo direction finding of Jovian radio emissions , 1998 .

[12]  D. Gurnett,et al.  Narrowband electromagnetic emissions from Jupiter's magnetosphere , 1981, Nature.

[13]  Y. Leblanc,et al.  Broadband Jovian kilometric radiation: New results on polarization and beaming , 1985 .

[14]  Henry B. Garrett,et al.  Charged particle distributions in Jupiter's magnetosphere , 1983 .

[15]  A. Roux,et al.  The plasma wave environment of Europa , 2001 .

[16]  D. Plettemeier,et al.  Juno model rheometry and simulation , 2016 .

[17]  R. Treumann The electron–cyclotron maser for astrophysical application , 2006 .

[18]  M. Kaiser Time‐variable magnetospheric radio emissions from Jupiter , 1993 .

[19]  Manfred Sampl,et al.  The Juno Waves Investigation , 2017 .

[20]  E. Smith,et al.  Ulysses at Jupiter: An Overview of the Encounter , 1992, Science.

[21]  B. Cecconi Correction to “Influence of an extended source on goniopolarimetry (or direction finding) with Cassini and Solar Terrestrial Relations Observatory radio receivers” , 2010 .

[22]  B. Cecconi Influence of an extended source on goniopolarimetry (or direction finding) with Cassini and Solar Terrestrial Relations Observatory radio receivers , 2007 .

[23]  Alain Lecacheux,et al.  Direction finding study of Jovian hectometric and broadband kilometric radio emissions: evidence for their auroral origin , 1994 .

[24]  P. Zarka,et al.  Source characteristics of Jovian narrow‐band kilometric radio emissions , 1993 .

[25]  R G Stone,et al.  Ulysses Radio and Plasma Wave Observations in the Jupiter Environment , 1992, Science.

[26]  D. Gurnett,et al.  Electromagnetic radiation trapped in the magnetosphere above the plasma frequency , 1973 .

[27]  M. Moncuquet,et al.  Latitudinal structure of outer Io plasma torus , 2002 .

[28]  Y. Leblanc,et al.  Narrow‐band Jovian kilometric radiation: Occurrence, polarization, and rotation period , 1986 .

[29]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[30]  D. Gurnett,et al.  Determination of Jupiter's electron density profile from plasma wave observations , 1981 .

[31]  M. Desch,et al.  Narrow‐band Jovian kilometric radiation: A new radio component , 1980 .

[32]  P. Zarka,et al.  Low-frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake , 2001 .

[33]  T. Hill,et al.  Latitudinal oscillations of plasma within the Io torus , 1980 .

[34]  P. Louarn,et al.  A new view of Jupiter's auroral radio spectrum , 2017 .

[35]  F. Bagenal Empirical model of the Io plasma torus: Voyager measurements , 1994 .

[36]  R. Mutel,et al.  Cluster multispacecraft determination of AKR angular beaming , 2008, 0803.0078.

[37]  J. Connerney,et al.  Modeling the Jovian current sheet and inner magnetosphere , 1981 .

[38]  M. Moncuquet,et al.  Modeling Jovian hectometric attenuation lanes during the Cassini flyby of Jupiter , 2015 .