Absorption spectra of the hybrid pigments responsible for anomalous color vision.

Unequal homologous recombination events between green and red cone pigment genes produce the red-green or green-red hybrid pigment genes found in many individuals with variant color vision. Photobleaching difference absorption spectroscopy of hybrid pigments produced in cultured cells shows that the spectral sensitivity of each hybrid pigment is intermediate between the parental green and red pigment sensitivities. Amino acids encoded by exons 2, 3, 4, and 5 produce spectral shifts at the wavelength of maximal absorbance of 0 to 4, 0 to 4, 3 to 4, and 15 to 21 nanometers, respectively, the exact value depending on the identities of amino acids elsewhere in the hybrid.

[1]  M. Alpern,et al.  Variation in the action spectrum of erythrolabe among deuteranopes. , 1977, Journal of Physiology.

[2]  J D Mollon,et al.  The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. , 1992, The EMBO journal.

[3]  G. H. Jacobs,et al.  Analysis of fusion gene and encoded photopigment of colour-blind humans , 1989, Nature.

[4]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[5]  C. M. Davenport,et al.  Molecular genetics of human blue cone monochromacy. , 1989, Science.

[6]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[7]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[8]  S. Pelletier,et al.  Design, chemical synthesis, and expression of genes for the three human color vision pigments. , 1991, Biochemistry.

[9]  M Alpern,et al.  Cone pigments in human deutan colour vision defects. , 1977, The Journal of physiology.

[10]  M Alpern,et al.  Lack of uniformity in colour matching. , 1979, The Journal of physiology.

[11]  M Alpern,et al.  The red and green cone visual pigments of deuternomalous trichromacy. , 1977, The Journal of physiology.

[12]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[13]  J Nathans,et al.  Tandem array of human visual pigment genes at Xq28. , 1988, Science.

[14]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[15]  H. Sperling,et al.  Isolation of a third chromatic mechanism in the deuteranomalous observer. , 1973, Vision research.

[16]  W. Rushton,et al.  Pigments in anomalous trichromats. , 1973, Vision research.

[17]  J. Mollon,et al.  Sequence divergence and copy number of the middle- and long-wave photopigment genes in old world monkeys , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  R. Heilig,et al.  A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. , 1990, Genomics.

[19]  J. Winderickx,et al.  Polymorphism in red photopigment underlies variation in colour matching , 1992, Nature.

[20]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.