Origin of the bathochromic shift in the early photointermediates of the rhodopsin visual cycle: A CASSCF/CASPT2 study

CASSCF/CASPT2 calcns. have been applied to study the excited-state properties of the chromophore in rhodopsin and in the early photointermediate, photorhodopsin. For rhodopsin, the chromophore geometry was taken from an optimized X-ray structure while for photorhodopsin the structure proposed by Bifone et al. (1997) was employed. The exptl. obsd. bathochromic shift of 72 nm is faithfully reproduced by the calcn. Anal. of a model chromophore in which the transition between the geometries is performed stepwise reveals that this shift is predominantly caused by double bond torsion.

[1]  Energy Storage in the Primary Photoproduct of Vision , 1997 .

[2]  Hideo Suzuki,et al.  Theory of the Optical Property of Visual Pigment , 1974 .

[3]  Ursula Rothlisberger,et al.  Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. , 2002, Biochemistry.

[4]  M. Elstner,et al.  11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. , 2002, Biochemistry.

[5]  B. Honig,et al.  Visual-pigment spectra: implications of the protonation of the retinal Schiff base. , 1976, Biochemistry.

[6]  S. O. Smith,et al.  NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. , 1995, Biochemistry.

[7]  Ab initio molecular dynamics of rhodopsin , 1997 .

[8]  F. Siebert Application of FTIR Spectroscopy to the Investigation of Dark Structures and Photoreactions of Visual Pigments , 1995 .

[9]  Marco Garavelli,et al.  Cyclooctatetraene computational photo- and thermal chemistry: a reactivity model for conjugated hydrocarbons. , 2002, Journal of the American Chemical Society.

[10]  R. Mathies,et al.  Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. , 1989, Biochemistry.

[11]  Richard A. Mathies,et al.  Vibrational Assignment of Torsional Normal Modes of Rhodopsin: Probing Excited-State Isomerization Dynamics along the Reactive C11C12 Torsion Coordinate , 1998 .

[12]  A. Watts,et al.  Observations of light-induced structural changes of retinal within rhodopsin , 2000, Nature.

[13]  K. Palczewski,et al.  Crystal structure of rhodopsin: implications for vision and beyond. , 2001, Current opinion in structural biology.

[14]  V. Buss,et al.  CASPT2 calculation of the excited states of symmetric polyenyl cations , 2002 .

[15]  Helmut Langer,et al.  Biochemistry and Physiology of Visual Pigments , 2012, Springer Berlin Heidelberg.

[16]  E. Tajkhorshid,et al.  Performance of the AM1, PM3, and SCC-DFTB methods in the study of conjugated Schiff base molecules , 2002 .

[17]  H. D. de Groot,et al.  Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. , 1999, Biochemistry.

[18]  Frank Terstegen,et al.  ABSOLUTE SENSE OF TWIST OF THE C12-C13 BOND OF THE RETINAL CHROMOPHORE IN RHODOPSIN : SEMIEMPIRICAL AND NONEMPIRICAL CALCULATIONS OF CHIROPTICAL DATA , 1998 .

[19]  K. Nakanishi,et al.  The Location of the Chromophore in Rhodopsin - A Photoaffinity Study , 1994 .

[20]  G. Wald,et al.  Pre-Lumirhodopsin and the Bleaching of Visual Pigments , 1963, Nature.

[21]  Y. Shichida,et al.  Structure around C6-C7 bond of the chromophore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs. , 1996, Biochemistry.

[22]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.

[23]  V. Buss,et al.  Inherent chirality of the retinal chromophore in rhodopsin-A nonempirical theoretical analysis of chiroptical data. , 2001, Chirality.

[24]  H. Dartnall The photosensitivities of visual pigments in the presence of hydroxylamine. , 1968, Vision research.

[25]  Frank Terstegen,et al.  Influence of DFT-calculated electron correlation on energies and geometries of retinals and of retinal derivatives related to the bacteriorhodopsin and rhodopsin chromophores , 1998 .

[26]  Michael J. Bearpark,et al.  Product Distribution in the Photolysis of s-cis Butadiene: A Dynamics Simulation , 2001 .

[27]  Steven O. Smith,et al.  Carbon-13 magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin , 1991 .

[28]  Y. Hayashi,et al.  Stereoselective synthesis of key (η6-arene)Cr(CO)3 complexes to acorenone and acorenone B , 1986 .

[29]  M. Fülscher,et al.  Nonempirical Calculation of Polymethine Excited States. , 2001, Angewandte Chemie.

[30]  M. Fülscher,et al.  The electronic spectra of symmetric cyanine dyes: A CASPT2 study , 2001 .

[31]  T. Yoshizawa,et al.  Studies on Intermediates of Visual Pigments by Absorption Spectra at Liquid Helium Temperature and Circular Dichroism at Low Temperatures , 1973 .

[32]  L. Stryer,et al.  Induced optical activity of the metarhodopsins. , 1971, Biochemistry.

[33]  M. Ishiguro A Mechanism of Primary Photoactivation Reactions of Rhodopsin: Modeling of the Intermediates in the Rhodopsin Photocycle , 2000 .

[34]  Tao Wang,et al.  On the bioactive conformation of the rhodopsin chromophore: absolute sense of twist around the 6-s-cis bond. , 2001, Chemistry.

[35]  Efthimios Kaxiras,et al.  A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method , 2001 .

[36]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[37]  P. E. Blatz,et al.  Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. , 1972, Biochemistry.

[38]  A. Cooper Energy uptake in the first step of visual excitation , 1979, Nature.

[39]  Frank Terstegen,et al.  Geometries and interconversion pathways of free and protonated β-ionone Schiff bases. An ab initio study of photoreceptor chromophore model compounds , 1997 .

[40]  E. Meng,et al.  Receptor activation: what does the rhodopsin structure tell us? , 2001, Trends in pharmacological sciences.

[41]  J. P. Cosyn,et al.  Photochemistry with circularly polarised light. II) Asymmetric synthesis of octa and nonahelicene. , 1971 .

[42]  R. Mathies,et al.  Resonance Raman Structural Evidence that the Cis-to-Trans Isomerization in Rhodopsin Occurs in Femtoseconds. , 2001, The journal of physical chemistry. B.

[43]  L. P. Murray,et al.  The nature of the primary photochemical events in rhodopsin and isorhodopsin. , 1988, Biophysical journal.

[44]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[45]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[46]  K. Palczewski,et al.  G protein-coupled receptor rhodopsin: a prospectus. , 2003, Annual review of physiology.

[47]  H. Shichi Biochemistry of vision , 1983 .

[48]  H. Kandori,et al.  Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide. , 1989, Biophysical journal.