Temperatures are not useful to characterise bright-soliton experiments for ultra-cold atoms

Contrary to many other translationally invariant one-dimensional models, the low-temperature phase for an attractively interacting one-dimensional Bose-gas (a quantum bright soliton) is stable against thermal fluctuations. However, treating the thermal properties of quantum bright solitons within the canonical ensemble leads to anomalous fluctuations of the total energy that indicate that canonical and micro-canonical ensembles are not equivalent. State-of-the-art experiments are best described by the micro-canonical ensemble, within which we predict a co-existence between single atoms and solitons even in the thermodynamic limit - contrary to strong predictions based on both the Landau hypothesis and the canonical ensemble. This questions the use of temperatures to describe state-of-the-art bright soliton experiments that currently load Bose-Einstein condensates into quasi-one-dimensional wave guides without adding contact to a heat bath.

[1]  C. Weiss Finite-temperature phase transition in a homogeneous one-dimensional gas of attractive bosons , 2016, 1610.09070.

[2]  A. Aspect,et al.  Production of strongly bound 39K bright solitons , 2016, 1609.01560.

[3]  M. A. Sooriyabandara,et al.  Observation of Breathers in an Attractive Bose Gas , 2015, 1509.06844.

[4]  A. L. Marchant,et al.  Quantum reflection of bright solitary matter-waves from a narrow attractive potential , 2015, 1507.04639.

[5]  K. Sacha,et al.  Lieb-Liniger model: Emergence of dark solitons in the course of measurements of particle positions , 2015, 1505.06586.

[6]  P. Schmelcher,et al.  Many-body processes in black and gray matter-wave solitons , 2014, 1411.4794.

[7]  K. Rzążewski,et al.  Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model , 2014, 1402.5650.

[8]  P. Altin,et al.  Bright solitonic matter-wave interferometer. , 2014, Physical review letters.

[9]  M. Kasevich,et al.  Evaporative production of bright atomic solitons. , 2014, Physical review letters.

[10]  M. Olshanii,et al.  Une transition liquide–gaz pour des bosons en interaction attractive à une dimension , 2014 .

[11]  K. Sacha,et al.  Many-body matter-wave dark soliton. , 2013, Physical review letters.

[12]  V. Vuletić Collisions of matter-wave solitons , 2014 .

[13]  A. L. Marchant,et al.  Controlled formation and reflection of a bright solitary matter-wave , 2013, Nature Communications.

[14]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[15]  K. Pawłowski,et al.  Statistical properties of one-dimensional attractive Bose gas , 2011, 1103.4017.

[16]  L. Cederbaum,et al.  Swift loss of coherence of soliton trains in attractive Bose-Einstein condensates. , 2010, Physical review letters.

[17]  J. Schmiedmayer,et al.  Thermalization in a quasi-one-dimensional ultracold bosonic gas , 2009, 0912.4493.

[18]  B. Altshuler,et al.  A finite-temperature phase transition for disordered weakly interacting bosons in one dimension , 2009, 0910.4534.

[19]  L. Carr,et al.  Quantum entangled dark solitons formed by ultracold atoms in optical lattices. , 2007, Physical review letters.

[20]  M. Scully,et al.  Condensation of N interacting bosons: a hybrid approach to condensate fluctuations. , 2006, Physical review letters.

[21]  C. Wieman,et al.  Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates. , 2006, Physical review letters.

[22]  V. Yukalov Fluctuations of composite observables and stability of statistical systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  M. Raizen,et al.  Bose Einstein Condensate in a Box , 2005, cond-mat/0503590.

[24]  V. Yukalov No anomalous fluctuations exist in stable equilibrium systems , 2005, cond-mat/0501195.

[25]  Chaohong Lee,et al.  Propagation and breathing of matter-wave-packet trains (6 pages) , 2004 .

[26]  P. Treutlein,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[27]  L. Carr,et al.  Spontaneous soliton formation and modulational instability in Bose-Einstein condensates. , 2003, Physical review letters.

[28]  L. Carr,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[29]  R. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[30]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[31]  Y. Castin,et al.  Bose–Einstein condensates in symmetry breaking states , 2000, cond-mat/0012040.

[32]  E. Wright,et al.  Dark solitons in a one-dimensional condensate of hard core bosons. , 2000, Physical review letters.

[33]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[34]  W. Zwerger,et al.  Anomalous condensate fluctuations in strongly interacting superfluids , 1999, cond-mat/9906344.

[35]  K. Rzążewski,et al.  Fluctuations of a weakly interacting Bose-Einstein condensate , 1999, 0708.0092.

[36]  M. Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998, cond-mat/9804130.

[37]  S. Giorgini,et al.  Anomalous Fluctuations of the Condensate in Interacting Bose Gases , 1997, cond-mat/9711065.

[38]  M. Wilkens,et al.  Particle number counting statistics in ideal Bose gases. , 1997, Optics express.

[39]  S. Grossmann,et al.  Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps. , 1997, Optics express.

[40]  M. Olshanii,et al.  Trapped Bose gas: The canonical versus grand canonical statistics , 1997 .

[41]  K. Rzążewski,et al.  Fluctuations of Bose-Einstein Condensate , 1997 .

[42]  A. Degasperis,et al.  Comparison between the exact and Hartree solutions of a one-dimensional many-body problem , 1975 .

[43]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[44]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[45]  J. B. McGuire,et al.  Study of Exactly Soluble One-Dimensional N-Body Problems , 1964 .

[46]  E. Lieb,et al.  EXACT ANALYSIS OF AN INTERACTING BOSE GAS. I. THE GENERAL SOLUTION AND THE GROUND STATE , 1963 .