Analysis of the impact of channel estimation errors on the performance of a decision-feedback equalizer in fading multipath channels

A coherent receiver with a decision-feedback equalizer (DFE) operating on a Rayleigh fading channel under a suitable adaptive algorithm is considered. In the analysis of a DFE, a common assumption is that the receiver has perfect knowledge of the channel impulse response. However, this is not the case in practice, and for a rapidly fading channel, errors in channel tracking can become significant. We analyze theoretically the impact of these errors on the performance of a multichannel DFE. The expressions obtained for the achievable average MPSK bit error probabilities depend on the estimation error covariance. In order to specify this matrix, we focus on a special case when a Kalman filter is used as an optimal channel estimator. In this case, the probability of bit error can be assessed directly in terms of channel fading model parameters, the most interesting of which is the fading rate. Our results show the penalty imposed by imperfect channel estimation, as well as the fading-induced irreducible error rates. >