Wave Equation with p(x,t) - Laplacian and Damping Term: Existence and Blow-up

{( ) u(x; 0) = u0(x); ut(x; 0) = u1(x); x ∈ Ω; u| T = 0; ΓT = @Ω: (1) The coefficients a(x;t); (x;t); b(x;t); exponents p(x;t); (x;t) and the source term f (x;t) are given functions of their arguments satisfying 0 < a ≤ a(x;t) ≤ a+ < ∞; 0 < ≤ (x;t) ≤ + < ∞; |b(x;t)| ≤ b+ < ∞; (2) 1 < p ≤ p(x;t) ≤ p+ < ∞; 1 < ≤ (x;t) ≤ + < ∞; (3) f ∈ L 2 (QT ); u1 ∈ L 2 (Ω); u0 ∈ L 2 (Ω) ∩ L ( ;0) (Ω) ∩ W 1;p( ;0) (Ω): (4) Problem (1) appears in models of nonlinear viscoelasticity. The local and global existence theorems and blow- up effects for solutions hyperbolic equations of the type (1) with constant exponents of nonlinearity have been studied in many papers , (see, e.g., [5]). However, only papers [6, 7] are devoted to the study of hyperbolic equations of the type (1) with variable nonlinearities. In the present communication, we discuss how the variable character of nonlinearity influences the existence and blow-up theory for the EDPs of the type (1). The analysis is based on the methods developed in [1]-[4].

[1]  M. Dreher,et al.  The Wave Equation for the p-Laplacian , 2007 .

[2]  Sergey Shmarev,et al.  Chapter 1 Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions , 2006 .

[3]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[4]  Salim A. Messaoudi,et al.  Blow up in the Cauchy problem for a nonlinearly damped wave equation , 2003 .

[5]  S. Antontsev,et al.  Extinction of solutions of parabolic equations with variable anisotropic nonlinearities , 2008 .

[6]  S. Antontsev,et al.  Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions , 2006 .

[7]  M. Jazar,et al.  Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions , 2008 .

[8]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[9]  Pedro Pablo Durand Lazo,et al.  Global solutions for a nonlinear wave equation , 2008, Appl. Math. Comput..

[10]  S. Antontsev,et al.  On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity , 2010 .

[11]  Blow-up results for some second-order hyperbolic inequalities with a nonlinear term with respect to the velocity , 2005, math-ph/0505045.

[12]  Stanislav N. Antontsev,et al.  Blow-up of solutions to parabolic equations with nonstandard growth conditions , 2010, J. Comput. Appl. Math..

[13]  Zahava Wilstein Global Well-Posedness for a Nonlinear Wave Equation with p-Laplacian Damping , 2011 .

[14]  Yang Zhijian Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term☆ , 2003 .

[15]  J. Clements,et al.  EXISTENCE THEOREMS FOR A QUASILINEAR EVOLUTION EQUATION , 1974 .

[16]  Tosio Kato Biow‐up of solutions of some nonlinear hyperbolic equations , 1980 .

[17]  Andreas Prohl,et al.  Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions , 2010, Math. Comput..

[18]  Giuseppina Autuori,et al.  Asymptotic stability for anisotropic Kirchhoff systems , 2009 .

[19]  M. Chipot,et al.  Uniqueness results for equations of the p(x)-Laplacian type , 2007 .

[20]  Belkacem Said Houari,et al.  Global non‐existence of solutions of a class of wave equations with non‐linear damping and source terms , 2004 .

[21]  Yang Zhijian Initial boundary value problem for a class of non‐linear strongly damped wave equations , 2003 .

[22]  S. Antontsev,et al.  Localization of solutions of anisotropic parabolic equations , 2009 .

[23]  V. Galaktionov,et al.  Blow-up and critical exponents for nonlinear hyperbolic equations , 2003 .

[24]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems , 2002 .

[25]  S. Messaoudi On the decay of solutions for a class of quasilinear hyperbolic equations with non‐linear damping and source terms , 2005 .

[26]  Enzo Vitillaro,et al.  Blow-up for nonlinear dissipative wave equations in Rn , 2005 .

[27]  S. Antontsev,et al.  Parabolic Equations with Anisotropic Nonstandard Growth Conditions , 2006 .

[28]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[29]  Chunlai Mu,et al.  Blow-up phenomena for a doubly degenerate equation with positive initial energy , 2010 .

[30]  J. Rodrigues,et al.  On stationary thermo-rheological viscous flows , 2006 .

[31]  S. Antontsev,et al.  Wave equation with -Laplacian and damping term: Blow-up of solutions , 2011 .

[32]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[33]  Zhijian Yang,et al.  Cauchy problem for quasi-linear wave equations with viscous damping , 2006 .

[34]  V. Zhikov Density of Smooth Functions in Sobolev-Orlicz Spaces , 2006 .

[35]  Salim A. Messaoudi,et al.  Blow Up in a Nonlinearly Damped Wave Equation , 2001 .

[36]  Guowang Chen,et al.  Global existence of solutions for quasi-linear wave equations with viscous damping , 2003 .

[37]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[38]  Giuseppina Autuori,et al.  Global Nonexistence for Nonlinear Kirchhoff Systems , 2010 .

[39]  Yang Zhijian Existence and asymptotic behaviour of solutions for a class of quasi‐linear evolution equations with non‐linear damping and source terms , 2002 .

[40]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[41]  H. Levine,et al.  Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy , 2000 .

[42]  S. Antontsev,et al.  Anisotropic parabolic equations with variable nonlinearity , 2009 .

[43]  Juan Pablo Pinasco,et al.  Blow-up for parabolic and hyperbolic problems with variable exponents , 2009 .