An analytical fiber ODF reconstruction in 3D polarized light imaging

Three dimensional polarized light imaging (3D-PLI) utilizes the birefringence in postmortem tissue to map its spatial fiber structure at a submillimeter resolution. We propose an analytical method to compute the fiber orientation distribution function (ODF) from high-resolution vector data provided by 3D-PLI. This strategy enables the bridging of high resolution 3D-PLI to diffusion magnetic resonance imaging with relatively low spatial resolution. First, the fiber ODF is modeled as a sum of K orientations on the unit sphere and expanded with a high order spherical harmonics series. Then, the coefficients of the spherical harmonics are derived directly with the spherical Fourier transform. We quantitatively validate the accuracy of the reconstruction against synthetic data and show that we can recover complex fiber configurations in the human heart at different scales.