CreChainDo: an iterative and interactive Web information retrieval system based on lattices

This paper presents an iterative and interactive information retrieval (IR) system for Web search using formal concept analysis (FCA). FCA provides a natural way to organise objects according to their properties and it has been used in recent work to organise search engine results. The navigation over the lattice helps the user to explore a structured and synthetic result. Such a lattice contains concepts that are relevant and others that are not relevant regarding a given IR task. In this way, lattices are introduced in an interactive and iterative system. The user expresses his negative or positive agreement with some concept of the lattice in respect of his objective of IR. These user choices are converted into operations over the lattice. The lattice is dynamically updated for a better fit to the request.

[1]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[2]  Oren Etzioni,et al.  Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.

[3]  Claudio Carpineto,et al.  Order-theoretical ranking , 2000, J. Am. Soc. Inf. Sci..

[4]  Marcus Fontoura,et al.  Using annotations in enterprise search , 2006, WWW '06.

[5]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[6]  Peter W. Eklund,et al.  Concept Similarity and Related Categories in SearchSleuth , 2008, ICCS.

[7]  Amedeo Napoli,et al.  CORON: A Framework for Levelwise Itemset Mining Algorithms , 2005 .

[8]  Sébastien Ferré,et al.  Camelis: Organizing and Browsing a Personal Photo Collection with a Logical Information System , 2007, CLA.

[9]  Susan T. Dumais,et al.  Implicit queries (IQ) for contextualized search , 2004, SIGIR '04.

[10]  Claudio Carpineto,et al.  Effective Reformulation of Boolean Queries with Concept Lattices , 1998, FQAS.

[11]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[12]  Bjoern Koester,et al.  Conceptual Knowledge Retrieval with FooCA: Improving Web Search Engine Results with Contexts and Concept Hierarchies , 2006, ICDM.

[13]  Gerd Stumme,et al.  Document retrieval for e-mail search and discovery using formal concept analysis , 2003, Appl. Artif. Intell..

[14]  Soo Young Rieh,et al.  Analysis of multiple query reformulations on the web: The interactive information retrieval context , 2006, Information Processing & Management.

[15]  Emmanuel Nauer,et al.  Dynamical Modification of Context for an Iterative and Interactive Information Retrieval Process on the Web , 2007, CLA.

[16]  Claudio Carpineto,et al.  Information retrieval through hybrid navigation of lattice representations , 1996, Int. J. Hum. Comput. Stud..

[17]  Gerd Stumme,et al.  CEM-Visualisation and Discovery in Email , 2000, PKDD.

[18]  Petra Perner Advances in Data Mining, Applications in Medicine, Web Mining, Marketing, Image and Signal Mining, 6th Industrial Conference on Data Mining, ICDM 2006, Leipzig, Germany, July 14-15, 2006, Proceedings , 2006, Industrial Conference on Data Mining.

[19]  Jean-Charles Lamirel,et al.  Novelty Detection for Modeling User's Profile , 2005, FLAIRS Conference.

[20]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[21]  Jing Bai,et al.  Context-sensitive information retrieval , 2007 .

[22]  Jon Ducrou DVDSleuth: A Case Study in Applied Formal Concept Analysis for Navigating Web Catalogs , 2007, ICCS.

[23]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[24]  Claudio Carpineto,et al.  Mobile Clustering Engine , 2006, ECIR.

[25]  Claudio Carpineto,et al.  Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO , 2004, J. Univers. Comput. Sci..

[26]  Peter W. Eklund,et al.  FCA-Based Browsing and Searching of a Collection of Images , 2006, ICCS.

[27]  Gerd Stumme,et al.  Document Retrieval for Email Search and Discovery using Formal Concept Analysis , 2002 .

[28]  Peter W. Eklund,et al.  SearchSleuth: The Conceptual Neighbourhood of an Web Query , 2007, CLA.

[29]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..