Non-Coercive Radially Symmetric Variational Problems: Existence, Symmetry and Convexity of Minimizers

We prove the existence of radially symmetric solutions and the validity of Euler–Lagrange necessary conditions for a class of variational problems with slow growth. The results are obtained through the construction of suitable superlinear perturbations of the functional having the same minimizers of the original one.

[1]  An existence result for noncoercive nonconvex problems in the calculus of variations , 1996 .

[2]  G. Crasta,et al.  Existence Results for Noncoerecive Variational Problems , 1996 .

[3]  Existence and symmetry of minimizers for nonconvex radially symmetric variational problems , 2007, 0704.3901.

[4]  Minimizers for nonconvex variational problems in the plane via convex/concave rearrangements , 2017 .

[5]  G. Crasta,et al.  Some estimates for the torsional rigidity of composite rods , 2007 .

[6]  Philip D. Loewen,et al.  An intermediate existence theory in the calculus of variations , 1989 .

[7]  A. Cellina,et al.  On the Minimum Problem for a Class of Non-coercive Functionals☆ , 1996 .

[8]  Minimization of non-coercive integrals by means of convex rearrangement , 2012 .

[9]  Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems , 2000 .

[10]  Graziano Crasta,et al.  On the Minimum Problem for a Class of Noncoercive Nonconvex Functionals , 1999, SIAM J. Control. Optim..

[11]  G. Crasta,et al.  Nonconvex Minimization Problems for Functionals Defined on Vector Valued Functions , 2001 .

[12]  On the existence and uniqueness of minimizers for a class of integral functionals , 2005 .

[13]  Bernd Kawohl,et al.  A symmetry problem in the calculus of variations , 1996 .

[14]  G. Crasta,et al.  A Sharp Upper Bound for the¶Torsional Rigidity of Rods¶by Means of Web Functions , 2002 .

[15]  Arrigo Cellina,et al.  The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions , 2003 .

[16]  G. Crasta,et al.  Some estimates of the minimizing properties of web functions , 2002 .

[17]  G. Crasta,et al.  On a long-standing conjecture by Pólya–Szegö and related topics , 2005 .

[18]  Estimates for the energy of the solutions to elliptic Dirichlet problems on convex domains , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  G. Crasta,et al.  Geometric constraints on the domain for a class of minimum problems , 2003 .

[20]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[21]  A. Cellina,et al.  On minima of radially symmetric functionals of the gradient , 1994 .

[22]  A sharp uniqueness result for a class of variational problems solved by a distance function , 2006, math/0612600.

[23]  An indirect method in the calculus of variations , 1993 .

[24]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[25]  On the role of energy convexity in the web function approximation , 2005 .

[26]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[27]  Existence of Minimizers for Nonconvex Variational Problems with Slow Growth , 1998 .

[28]  G. Crasta Variational Problems for a Class of Functionals on Convex Domains , 2002 .

[29]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[30]  R. T. Rockafellarp EXISTENCE AND DUALITY THEOREMS FOR CONVEX PROBLEMS OF BOLZA , 2010 .