On Smooth Mesoscopic Linear Statistics of the Eigenvalues of Random Permutation Matrices

We study the limiting behavior of smooth linear statistics of the spectrum of random permutation matrices in the mesoscopic regime, when the permutation follows one of the Ewens measures on the symmetric group. If we apply a smooth enough test function f to all the determinations of the eigenangles of the permutations, we get a convergence in distribution when the order of the permutation tends to infinity. Two distinct kinds of limit appear: if $$f(0)\ne 0$$ f ( 0 ) ≠ 0 , we have a central limit theorem with a logarithmic variance; and if $$f(0) = 0$$ f ( 0 ) = 0 , the convergence holds without normalization and the limit involves a scale-invariant Poisson point process.

[1]  Mesoscopic central limit theorem for the circular $\beta $-ensembles and applications , 2019, 1902.06611.

[2]  M. Duits,et al.  Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble , 2016, 1611.00991.

[3]  William Feller,et al.  The fundamental limit theorems in probability , 1945 .

[4]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[5]  Gaultier Lambert Mesoscopic fluctuations for unitary invariant ensembles , 2015, 1510.03641.

[6]  Kurt Johansson,et al.  Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in determinantal processes , 2015 .

[7]  K. Johansson,et al.  On Mesoscopic Equilibrium for Linear Statistics in Dyson’s Brownian Motion , 2013, Memoirs of the American Mathematical Society.

[8]  Benjamin Tsou Eigenvalue Fluctuations of Symmetric Group Permutation Representations on k-tuples and k-subsets , 2018, 1810.11904.

[9]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[10]  P. Bourgade Mesoscopic fluctuations of the zeta zeros , 2009, 0902.1757.

[11]  E. Manstavicius The Poisson Distribution for Linear Statistics of Random Permutations , 2005 .

[13]  Simon Tavaré,et al.  A Tale of Three Couplings: Poisson–Dirichlet and GEM Approximations for Random Permutations , 2006, Combinatorics, Probability and Computing.

[14]  Benjamin Tsou The Eigenvalue Point Process for Symmetric Group Permutation Representations on $k$-tuples. , 2019, 1901.06721.

[15]  N. Simm,et al.  Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory , 2016, 1612.02367.

[16]  Eigenvalue distributions of random unitary matrices , 2002 .

[17]  Joseph Najnudel,et al.  The distribution of eigenvalues of randomized permutation matrices , 2010 .

[18]  S. Evans Eigenvalues of Random Wreath Products , 2002 .

[19]  A. Nikeghbali,et al.  The circular unitary ensemble and the Riemann zeta function: the microscopic landscape and a new approach to ratios , 2014, 1410.1440.

[20]  Kelly Wieand,et al.  Eigenvalue distributions of random permutation matrices , 2000 .

[21]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[22]  A. Nikeghbali,et al.  Random permutation matrices under the generalized Ewens measure. , 2011, 1109.5010.

[23]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[24]  K. Wieand Permutation Matrices, Wreath Products, and the Distribution of Eigenvalues , 2003 .

[25]  Lebowitz,et al.  Gaussian fluctuation in random matrices. , 1994, Physical review letters.

[26]  Valentin Bahier Characteristic polynomials of modified permutation matrices at microscopic scale , 2018, Stochastic Processes and their Applications.

[27]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[28]  Valentin Bahier On the Number of Eigenvalues of Modified Permutation Matrices in Mesoscopic Intervals , 2016, 1611.06699.

[29]  Alexander Soshnikov The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities , 1999 .

[30]  Richard Arratia,et al.  On the central role of scale invariant Poisson processes on (0, ∞) , 1997, Microsurveys in Discrete Probability.

[31]  W. Feller,et al.  The fundamental limit theorems in probability , 1945 .

[32]  Yukun He Mesoscopic Linear Statistics of Wigner Matrices of Mixed Symmetry Class , 2018, Journal of Statistical Physics.

[33]  G. B. Arous,et al.  On fluctuations of eigenvalues of random permutation matrices , 2011, 1106.2108.

[34]  A. Soshnikov,et al.  Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields , 1999, math-ph/9907012.

[35]  Yukun He,et al.  Mesoscopic eigenvalue statistics of Wigner matrices , 2016, 1603.01499.