Optimal Controllers with Complex Order Derivatives

This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complex-order control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.

[1]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[6]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[7]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[8]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[9]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[10]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[11]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[12]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[13]  J. A. Tenreiro Machado,et al.  Describing Function Analysis of Systems with Impacts and Backlash , 2002 .

[14]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[15]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[16]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[17]  M. Combescure Hamiltonian Chaos and Fractional Dynamics , 2005 .

[18]  Carl F. Lorenzo,et al.  Conjugated-Order Differintegrals , 2005 .

[19]  Carl F. Lorenzo,et al.  Complex-Order Distributions , 2005 .

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[21]  Just L. Herder,et al.  Design of a Statically Balanced Tensegrity Mechanism , 2006 .

[22]  José António Tenreiro Machado,et al.  Complex-order dynamics in hexapod locomotion , 2006, Signal Process..

[23]  Bing-Gang Cao,et al.  Design of Fractional Order Controller Based on Particle Swarm Optimization , 2006 .

[24]  Duarte Valério,et al.  Tuning of Fractional Controllers Minimising H 2 and H∞ Norms , 2006 .

[25]  José António Tenreiro Machado,et al.  Time domain design of fractional differintegrators using least-squares , 2006, Signal Process..

[26]  B. West Fractional Calculus in Bioengineering , 2007 .

[27]  Carl F. Lorenzo,et al.  Complex Order-Distributions Using Conjugated order Differintegrals , 2007 .

[28]  Manuel F. Silva,et al.  Discretization of Complex-order Algorithms for Control Applications , 2008 .

[29]  J. A. Tenreiro Machado,et al.  Describing function of two masses with backlash , 2009 .

[30]  Carl F. Lorenzo,et al.  Identification of Complex Order-distributions , 2008 .

[31]  Amit Konar,et al.  Tuning PID and PI/λDδ Controllers using the Integral Time Absolute Error Criterion , 2008, 2008 4th International Conference on Information and Automation for Sustainability.

[32]  Ajith Abraham,et al.  Design of fractional order PIλDμ controllers with an improved differential evolution , 2008, GECCO '08.

[33]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[34]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[35]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives through the generalized mean , 2009 .

[36]  Dumitru Baleanu,et al.  Fractional Optimal Control Problems with Several State and Control Variables , 2010 .

[37]  J. A. Tenreiro Machado,et al.  Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms , 2010 .

[38]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[39]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[40]  J. Machado Optimal tuning of fractional controllers using genetic algorithms , 2010 .

[41]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[42]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[43]  Yaduvir Singh,et al.  A Novel Evolutionary Tuning Method for Fractional Order PID Controller , 2011 .

[44]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[45]  Carla M. A. Pinto,et al.  Complex order van der Pol oscillator , 2011 .

[46]  José António Tenreiro Machado,et al.  Complex Order Biped Rhythms , 2011, Int. J. Bifurc. Chaos.

[47]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[48]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[49]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[50]  Xiaozhong Liao,et al.  Rational approximation for fractional-order system by particle swarm optimization , 2012 .

[51]  José António Tenreiro Machado,et al.  Multidimensional scaling analysis of fractional systems , 2012, Comput. Math. Appl..

[52]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .