Brain tumor segmentation with corner attention and high-dimensional perceptual loss

[1]  Tommy Löfstedt,et al.  Multi-Decoder Networks with Multi-Denoising Inputs for Tumor Segmentation , 2020, BrainLes@MICCAI.

[2]  Trialing U-Net Training Modifications for Segmenting Gliomas Using Open Source Deep Learning Framework , 2020, BrainLes@MICCAI.

[3]  A. Jemal,et al.  Cancer statistics, 2019 , 2019, CA: a cancer journal for clinicians.

[4]  DR-Unet104 for Multimodal MRI brain tumor segmentation , 2020, BrainLes@MICCAI.

[5]  Zexun Zhou,et al.  AFPNet: A 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images , 2020, Neurocomputing.

[6]  Yang Zhao,et al.  A Stacked Multi-Connection Simple Reducing Net for Brain Tumor Segmentation , 2019, IEEE Access.

[7]  In-So Kweon,et al.  CBAM: Convolutional Block Attention Module , 2018, ECCV.

[8]  Konstantinos Kamnitsas,et al.  Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation , 2017, BrainLes@MICCAI.

[9]  Muhammad Imran,et al.  Efficient Brain Tumor Segmentation With Multiscale Two-Pathway-Group Conventional Neural Networks , 2019, IEEE Journal of Biomedical and Health Informatics.

[10]  Linlin Shen,et al.  Context Aware 3D UNet for Brain Tumor Segmentation , 2020, BrainLes@MICCAI.

[11]  Konstantinos Kamnitsas,et al.  DeepMedic for Brain Tumor Segmentation , 2016, BrainLes@MICCAI.

[12]  Junwei Han,et al.  Exploring Task Structure for Brain Tumor Segmentation From Multi-Modality MR Images , 2020, IEEE Transactions on Image Processing.

[13]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Qiule Sun,et al.  Memory-Efficient Cascade 3D U-Net for Brain Tumor Segmentation , 2019, BrainLes@MICCAI.

[15]  Linlin Shen,et al.  HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation , 2020, ArXiv.

[16]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[17]  Vishal M. Patel,et al.  KiU-Net: Towards Accurate Segmentation of Biomedical Images using Over-complete Representations , 2020, MICCAI.

[18]  Changxing Ding,et al.  Dual-force convolutional neural networks for accurate brain tumor segmentation , 2019, Pattern Recognit..

[19]  Zheheng Jiang,et al.  CANet: Context Aware Network for Brain Glioma Segmentation , 2021, IEEE Transactions on Medical Imaging.

[20]  Stéphane Canu,et al.  Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities , 2021, IEEE Transactions on Image Processing.

[21]  Veronica Vilaplana,et al.  MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures , 2020, BrainLes@MICCAI.

[22]  Anis Koubaa,et al.  HTTU-Net: Hybrid Two Track U-Net for Automatic Brain Tumor Segmentation , 2020, IEEE Access.

[23]  Gongning Luo,et al.  Multi-step Cascaded Networks for Brain Tumor Segmentation , 2019, BrainLes@MICCAI.

[24]  Cerberus: A Multi-headed Network for Brain Tumor Segmentation , 2020, BrainLes@MICCAI.

[25]  Vikas L. Bommineni,et al.  PieceNet: A Redundant UNet Ensemble , 2020, BrainLes@MICCAI.

[26]  Yanjun Peng,et al.  Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN , 2021, Neurocomputing.

[27]  Dacheng Tao,et al.  Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task , 2019, BrainLes@MICCAI.

[28]  MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation , 2020, BrainLes@MICCAI.

[29]  Changsheng Li,et al.  Multimodal brain tumor image segmentation using WRN-PPNet , 2019, Comput. Medical Imaging Graph..

[30]  Hao Chen,et al.  Brain tumor segmentation with deep convolutional symmetric neural network , 2020, Neurocomputing.

[31]  Mohammadreza Soltaninejad,et al.  Multi-Resolution 3D CNN for MRI Brain Tumor Segmentation and Survival Prediction , 2019, BrainLes@MICCAI.

[32]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Qiegen Liu,et al.  X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-range Dependencies , 2019, MICCAI.

[34]  Kai Hu,et al.  Brain Tumor Segmentation Using Multi-Cascaded Convolutional Neural Networks and Conditional Random Field , 2019, IEEE Access.

[35]  Andriy Myronenko,et al.  3D MRI brain tumor segmentation using autoencoder regularization , 2018, BrainLes@MICCAI.

[36]  Tahir Mustafa Madni,et al.  Multi‐level dilated convolutional neural network for brain tumour segmentation and multi‐view‐based radiomics for overall survival prediction , 2021, Int. J. Imaging Syst. Technol..

[37]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[38]  Jinglong Du,et al.  3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads , 2020, Comput. Biol. Medicine.

[39]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[40]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[41]  Kaiming He,et al.  Group Normalization , 2018, ECCV.

[42]  Richard McKinley,et al.  Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty , 2020, BrainLes@MICCAI.

[43]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[46]  Jing Dong,et al.  Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation , 2020, IEEE Access.