Neural constraints on human number concepts

True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.

[1]  J. Tanji,et al.  Numerical representation for action in the parietal cortex of the monkey , 2002, Nature.

[2]  Andreas Nieder,et al.  Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  V. Menon,et al.  Memory and cognitive control circuits in mathematical cognition and learning. , 2016, Progress in brain research.

[4]  Andreas Nieder,et al.  The Number Domain— Can We Count on Parietal Cortex? , 2004, Neuron.

[5]  Helen M. Ditz,et al.  Neurons selective to the number of visual items in the corvid songbird endbrain , 2015, Proceedings of the National Academy of Sciences.

[6]  Andreas Nieder,et al.  Complementary Roles for Primate Frontal and Parietal Cortex in Guarding Working Memory from Distractor Stimuli , 2014, Neuron.

[7]  E. Spelke,et al.  Language and Conceptual Development series Core systems of number , 2004 .

[8]  Stanislas Dehaene,et al.  Distinct Cerebral Pathways for Object Identity and Number in Human Infants , 2008, PLoS biology.

[9]  Andreas Nieder,et al.  Neurons in the Hippocampus of Crows Lack Responses to Non-spatial Abstract Categories , 2018, Front. Syst. Neurosci..

[10]  Marie Arsalidou,et al.  Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies , 2017, Developmental Cognitive Neuroscience.

[11]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[12]  Michael C. Frank,et al.  Number as a cognitive technology: Evidence from Pirahã language and cognition , 2008, Cognition.

[13]  Stanislas Dehaene,et al.  Approximate quantities and exact number words: dissociable systems , 2003, Neuropsychologia.

[14]  Steven P. Wise,et al.  Forward frontal fields: phylogeny and fundamental function , 2008, Trends in Neurosciences.

[15]  Paul B. Buckley,et al.  Comparisons of digits and dot patterns. , 1974, Journal of experimental psychology.

[16]  Nicola S. Clayton,et al.  Avian Models for Human Cognitive Neuroscience: A Proposal , 2015, Neuron.

[17]  Lisa K Fazio,et al.  Relations of different types of numerical magnitude representations to each other and to mathematics achievement. , 2014, Journal of experimental child psychology.

[18]  Maria Elena Miletto Petrazzini,et al.  Numerical abilities in fish: A methodological review , 2017, Behavioural Processes.

[19]  Elizabeth M Brannon,et al.  Training the Approximate Number System Improves Math Proficiency , 2013, Psychological science.

[20]  David Barner,et al.  Ontogenetic Origins of Human Integer Representations , 2019, Trends in Cognitive Sciences.

[21]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[22]  Andreas Nieder,et al.  Number detectors spontaneously emerge in a deep neural network designed for visual object recognition , 2019, Science Advances.

[23]  Qixuan Chen,et al.  Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. , 2014, Acta psychologica.

[24]  Giorgio Vallortigara,et al.  Arithmetic in newborn chicks , 2009, Proceedings of the Royal Society B: Biological Sciences.

[25]  Gavin R. Price,et al.  Impaired parietal magnitude processing in developmental dyscalculia , 2007, Current Biology.

[26]  S. Dehaene,et al.  Exact and Approximate Arithmetic in an Amazonian Indigene Group , 2004, Science.

[27]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[28]  C. W. Ragsdale,et al.  Levels of homology and the problem of neocortex. , 2015, Annual review of neuroscience.

[29]  Margot J. Taylor,et al.  Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations , 2011, NeuroImage.

[30]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[31]  Andreas Nieder,et al.  A Brain for Numbers: The Biology of the Number Instinct , 2019 .

[32]  Guido Marco Cicchini,et al.  Spontaneous perception of numerosity in humans , 2016, Nature Communications.

[33]  Kevin N Laland,et al.  The evolution of primate general and cultural intelligence , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  E. Spelke,et al.  Newborn infants perceive abstract numbers , 2009, Proceedings of the National Academy of Sciences.

[35]  E. J. Carter,et al.  Functional Imaging of Numerical Processing in Adults and 4-y-Old Children , 2006, PLoS biology.

[36]  S. Blair Hedges,et al.  The origin and evolution of model organisms , 2002, Nature Reviews Genetics.

[37]  Andreas Nieder,et al.  Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain , 2016, The Journal of Neuroscience.

[38]  Michael L Platt,et al.  Adaptations for social cognition in the primate brain , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Andreas Nieder,et al.  Compressed Scaling of Abstract Numerosity Representations in Adult Humans and Monkeys , 2009, Journal of Cognitive Neuroscience.

[40]  Elizabeth M. Brannon,et al.  Modeling the approximate number system to quantify the contribution of visual stimulus features , 2015, Cognition.

[41]  Hajime Mushiake,et al.  Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey , 2015, Scientific Reports.

[42]  D. C. Burr,et al.  Spontaneous perception of numerosity in pre-school children , 2019, Proceedings of the Royal Society B.

[43]  Steven T Piantadosi,et al.  True Numerical Cognition in the Wild , 2017, Psychological science.

[44]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[46]  Michael Schneider,et al.  Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. , 2017, Developmental science.

[47]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[48]  Harvey J Karten,et al.  Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Andreas Nieder,et al.  Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex , 2006, Science.

[50]  O. Güntürkün The avian ‘prefrontal cortex’ and cognition , 2005, Current Opinion in Neurobiology.

[51]  Andreas Nieder,et al.  Neurons in the Endbrain of Numerically Naive Crows Spontaneously Encode Visual Numerosity , 2018, Current Biology.

[52]  Elizabeth M. Brannon,et al.  Monkeys match and tally quantities across senses , 2008, Cognition.

[53]  Julian Jara-Ettinger,et al.  Universal and uniquely human factors in spontaneous number perception , 2017, Nature Communications.

[54]  Andreas Nieder,et al.  Basic mathematical rules are encoded by primate prefrontal cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[55]  Manuela Piazza,et al.  Neurocognitive start-up tools for symbolic number representations , 2010, Trends in Cognitive Sciences.

[56]  P. Gordon Numerical Cognition Without Words: Evidence from Amazonia , 2004, Science.

[57]  Andreas Nieder,et al.  A Labeled-Line Code for Small and Large Numerosities in the Monkey Prefrontal Cortex , 2007, The Journal of Neuroscience.

[58]  David A. Boas,et al.  Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants , 2010, NeuroImage.

[59]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[60]  P. Viswanathan,et al.  Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons , 2015, Current Biology.

[61]  Pooja Viswanathan,et al.  Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices , 2013, Proceedings of the National Academy of Sciences.

[62]  Andreas Nieder,et al.  Neuronal Representation of Numerosity Zero in the Primate Parieto-Frontal Number Network , 2016, Current Biology.

[63]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[64]  H S Terrace,et al.  Ordering of the numerosities 1 to 9 by monkeys. , 1998, Science.

[65]  Brian Butterworth,et al.  Stability and change in markers of core numerical competencies. , 2012, Journal of experimental psychology. General.

[66]  Andrea Facoetti,et al.  Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia , 2010, Cognition.

[67]  Brian Butterworth,et al.  Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students , 2004, Cognition.

[68]  A. Nieder The neuronal code for number , 2016, Nature Reviews Neuroscience.

[69]  Andreas Nieder,et al.  Numerical Rule Coding in the Prefrontal, Premotor, and Posterior Parietal Cortices of Macaques , 2012, The Journal of Neuroscience.

[70]  Giorgio Vallortigara,et al.  Discrimination of small numerosities in young chicks. , 2008, Journal of experimental psychology. Animal behavior processes.

[71]  John G. Fleagle,et al.  The Phylogeny of Primates , 2020, Evolutionary Neuroscience.

[72]  Masato Aoyama,et al.  Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos , 2014, Animal Behaviour.

[73]  Andreas Nieder,et al.  Numerosity representations in crows obey the Weber–Fechner law , 2016, Proceedings of the Royal Society B: Biological Sciences.

[74]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[75]  S. Dehaene,et al.  Representation of number in the brain. , 2009, Annual review of neuroscience.

[76]  Elizabeth M. Brannon,et al.  Malleability of the approximate number system: effects of feedback and training , 2012, Front. Hum. Neurosci..

[77]  Nele Demeyere,et al.  Common and dissociated mechanisms for estimating large and small dot arrays: Value‐specific fMRI adaptation , 2014, Human brain mapping.

[78]  Andreas Nieder,et al.  Inside the corvid brain—probing the physiology of cognition in crows , 2017, Current Opinion in Behavioral Sciences.

[79]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Avishai Henik,et al.  Meta-Analyses of Developmental fMRI Studies Investigating Typical and Atypical Trajectories of Number Processing and Calculation , 2011, Developmental neuropsychology.

[81]  Andreas Nieder,et al.  Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices , 2012, Proceedings of the National Academy of Sciences.

[82]  T. Bugnyar,et al.  Cognition without Cortex , 2016, Trends in Cognitive Sciences.

[83]  Florian Mormann,et al.  Single Neurons in the Human Brain Encode Numbers , 2018, Neuron.

[84]  S. Dehaene,et al.  Cultural Recycling of Cortical Maps , 2007, Neuron.

[85]  Andreas Nieder,et al.  Tuning to non‐symbolic proportions in the human frontoparietal cortex , 2009, The European journal of neuroscience.

[86]  Andreas Nieder,et al.  Representation of Abstract Quantitative Rules Applied to Spatial and Numerical Magnitudes in Primate Prefrontal Cortex , 2013, The Journal of Neuroscience.

[87]  S. Dehaene,et al.  Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. , 1990, Journal of experimental psychology. Human perception and performance.

[88]  Avishai Henik,et al.  Basic numerical processing in left intraparietal sulcus (IPS) acalculia , 2008, Cortex.

[89]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.