Progress control in iterated local search for nurse rostering

This paper describes an approach in which a local search technique is alternated with a process which ‘jumps’ to another point in the search space. After each ‘jump’ a (time-intensive) local search is used to obtain a new local optimum. The focus of the paper is in monitoring the progress of this technique on a set of real world nurse rostering problems. We propose a model for estimating the quality of this new local optimum. We can then decide whether to end the local search based on the predicted quality. The fact that we avoid searching these bad neighbourhoods enables us to reach better solutions in the same amount of time. We evaluate the approach on five highly constrained problems in nurse rostering. These problems represent complex and challenging real world rostering situations and the approach described here has been developed during a commercial implementation project by ORTEC bv.

[1]  Uwe Aickelin,et al.  Exploiting Problem Structure in a Genetic Algorithm Approach to a Nurse Rostering Problem , 2000, ArXiv.

[2]  Roberto Tadei,et al.  A greedy-based neighborhood search approach to a nurse rostering problem , 2004, Eur. J. Oper. Res..

[3]  Edmund K. Burke,et al.  A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem , 1998, SEAL.

[4]  Harald Meyer auf'm Hofe Solving Rostering Tasks as Constraint Optimization , 2000, PATAT.

[5]  Slim Abdennadher,et al.  Nurse Scheduling using Constraint Logic Programming , 1999, AAAI/IAAI.

[6]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[7]  Hoong Chuin Lau,et al.  On the complexity of manpower shift scheduling , 1996, Comput. Oper. Res..

[8]  Thomas Sttzle,et al.  Applying iterated local search to the permutation ow shop problem , 1998 .

[9]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..

[10]  John Thornton Nurse Rostering and Integer Programming Revisited , 1997 .

[11]  Amnon Meisels,et al.  Solving Employee Timetabling Problems by Generalized Local Search , 1999, AI*IA.

[12]  J. Tanomaru,et al.  Staff scheduling by a genetic algorithm with heuristic operators , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[13]  B.M.W. Cheng,et al.  A nurse rostering system using constraint programming and redundant modeling , 1997, IEEE Transactions on Information Technology in Biomedicine.

[14]  J. Bard,et al.  A column generation-based approach to solve the preference scheduling problem for nurses with downgrading , 2005 .

[15]  Ender Özcan,et al.  Memetic Algorithms for Nurse Rostering , 2005, ISCIS.

[16]  Ehud Gudes,et al.  Combining rules and constraints for employee timetabling , 1997, Int. J. Intell. Syst..

[17]  Atsuko Ikegami,et al.  A subproblem-centric model and approach to the nurse scheduling problem , 2003, Math. Program..

[18]  Jonathan F. Bard,et al.  Preference scheduling for nurses using column generation , 2005, Eur. J. Oper. Res..

[19]  Brigitte Jaumard,et al.  A generalized linear programming model for nurse scheduling , 1996, Eur. J. Oper. Res..

[20]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[21]  Jonathan F. Bard,et al.  Cyclic preference scheduling of nurses using a Lagrangian-based heuristic , 2007, J. Sched..

[22]  Andy Hon Wai Chun,et al.  Nurse Rostering at the Hospital Authority of Hong Kong , 2000, AAAI/IAAI.

[23]  Harvey H. Millar,et al.  Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming , 1998 .

[24]  X. Cai,et al.  A genetic algorithm for scheduling staff of mixed skills under multi-criteria , 2000, Eur. J. Oper. Res..

[25]  Greet Vanden Berghe,et al.  An advanced model and novel meta-heuristic solution methods to personnel scheduling in healthcare , 2002 .

[26]  Cid C. de Souza,et al.  Constructing nurse schedules at large hospitals , 2003 .

[27]  Gareth Richard Beddoe,et al.  Case-based reasoning in personnel rostering , 2004 .

[28]  Sanja Petrovic,et al.  Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering , 2006, Eur. J. Oper. Res..

[29]  Uwe Aickelin,et al.  An Indirect Genetic Algorithm for a Nurse Scheduling Problem , 2004, Comput. Oper. Res..

[30]  Edmund K. Burke,et al.  A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem , 2004, Eur. J. Oper. Res..

[31]  Georges Weil,et al.  Constraint programming for nurse scheduling , 1995 .

[32]  Mikael Rönnqvist,et al.  Scheduler – A System for Staff Planning , 2004, Ann. Oper. Res..

[33]  E. Burke,et al.  Variable neighborhood search for nurse rostering problems , 2004 .

[34]  Evelina Lamma,et al.  Proceedings of the 6th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence , 1999 .

[35]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[36]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[37]  Edmund K. Burke,et al.  SCHEDULING NURSES USING A TABU-SEARCH HYPERHEURISTIC , 2003 .

[38]  Masahito Yamamoto,et al.  Evolutionary algorithms for nurse scheduling problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[39]  A. Mason,et al.  A Nested Column Generator for solving Rostering Problems with Integer Programming , 1998 .

[40]  Kathryn A. Dowsland,et al.  Nurse scheduling with tabu search and strategic oscillation , 1998, Eur. J. Oper. Res..

[41]  S J Darmoni,et al.  HOROPLAN: computer-assisted nurse scheduling using constraint-based programming. , 1995, Journal of the Society for Health Systems.

[42]  P. Balasubramanie,et al.  Wavelet Feature Based Neural Classifier System for Object Classification with Complex Background , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[43]  Andreas T. Ernst,et al.  An Annotated Bibliography of Personnel Scheduling and Rostering , 2004, Ann. Oper. Res..

[44]  Hendrik Van Landeghem,et al.  The State of the Art of Nurse Rostering , 2004, J. Sched..

[45]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[46]  Edmund K. Burke,et al.  A Time Predefined Variable Depth Search for Nurse Rostering , 2013, INFORMS J. Comput..

[47]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[48]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[49]  Thomas Stützle,et al.  An Experimental Investigation of Iterated Local Search for Coloring Graphs , 2002, EvoWorkshops.

[50]  Uwe Aickelin,et al.  An estimation of distribution algorithm for nurse scheduling , 2007, Ann. Oper. Res..

[51]  Sanja Petrovic,et al.  Enhancing case-based reasoning for personnel rostering with selected tabu search concepts , 2007, J. Oper. Res. Soc..

[52]  D. Michael Warner,et al.  Scheduling Nursing Personnel According to Nursing Preference: A Mathematical Programming Approach , 1976, Oper. Res..

[53]  Peter I. Cowling,et al.  A Memetic Approach to the Nurse Rostering Problem , 2001, Applied Intelligence.