Optimal control of dynamical systems and structures under stochastic uncertainty: Stochastic optimal feedback control

Consider a dynamic mechanical control systems or structure under stochastic uncertainty, as e.g. the active control of a mechanical structure under stochastic applied dynamic loadings. Optimal controls, being most insensitive with respect to random parameter variations, are determined by finding stochastic optimal controls, i.e., controls minimizing the expected total costs composed of the costs arising along the trajectory, the costs for the control (correction), and possible terminal costs. The problem is modeled in the framework of optimal control under stochastic uncertainty, where the process differential equation depends on certain random parameters having a given probability distribution. Since by computing stochastic optimal controls, random parameter variations are incorporated into the optimal control design, most insensitive or robust controls are obtained. Based on the stochastic Hamiltonian of the optimal control problem under stochastic uncertainty, the class of ''H-minimal controls'' is determined first by solving a finite-dimensional stochastic program for the minimization of the expected Hamiltonian with respect to the input u(t) at time t. Having a H-minimal control, a two-point boundary value problem with random parameters is formulated for the computation of optimal state-and costate trajectories. Inserting then these trajectories into the H-minimal control, stochastic optimal controls are found, or at least stationary controls satisfying the necessary optimality conditions for a stochastic optimal control. Numerical solutions of the two-point boundary value problem are obtained by (i) Discretization of the underlying probability distribution of the random parameters, and (ii) Taylor expansion of the expected total costs and the expected Hamiltonian with respect to the random parameter vector at its expectation. The method is illustrated by the stochastic optimal regulation of a robot.

[1]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[2]  U. Ascher,et al.  A New Basis Implementation for a Mixed Order Boundary Value ODE Solver , 1987 .

[3]  Kurt Marti Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) for Robots , 2004 .

[4]  T. T. Soong,et al.  Recent advances in active control of civil engineering structures , 1988 .

[5]  T. T. Soong,et al.  Passive and Active Structural Vibration Control in Civil Engineering , 1994, CISM International Centre for Mechanical Sciences.

[6]  Jasbir S. Arora,et al.  Optimization of structural and mechanical systems , 2007 .

[7]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[8]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[9]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[10]  A. T. Bharucha-Reid,et al.  Random Integral Equations , 2012 .

[11]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[12]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[13]  J. A. Bather,et al.  Optimization of Stochastic Systems: Topics in Discrete-Time Dynamics , 1989 .

[14]  Ronald A. Howard,et al.  Dynamic Probabilistic Systems , 1971 .

[15]  Georg Ch. Pflug,et al.  Dynamic Stochastic Optimization , 2004 .

[16]  Kurt Marti Approximationen stochastischer Optimierungsprobleme , 1979 .

[17]  R. Stengel Stochastic Optimal Control: Theory and Application , 1986 .

[18]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[19]  T. T. Soong Active Structural Control in Civil Engineering , 1987 .

[20]  K. Marti Approximationen der Entscheidungsprobleme mit linearer Ergebnisfunktion und positiv homogener, subadditiver Verlustfunktion , 1975 .

[21]  T. T. Soong,et al.  State-of-the-art review: Active structural control in civil engineering , 1988 .

[22]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[23]  Satish Nagarajaiah,et al.  OPTIMAL CONTROL OF STRUCTURES , 2007 .

[24]  H. Bunke,et al.  Gewöhnliche Differentialgleichungen mit zufälligen Parametern , 1972 .

[25]  F. Weidenhammer,et al.  H. Bunke, Gewöhnliche Differentialgleichungen mit zufälligen Parametern. (Mathematische Lehrbücher und Monographien, Band XXXI). VI + 210 S. Berlin 1972. Akademie-Verlag. Preis geb. 40,—M , 1973 .

[26]  V. Smirnov Lehrgang der höheren mathematik , 1963 .

[27]  B. F. Spencer,et al.  Active Structural Control: Theory and Practice , 1992 .

[28]  B. F. Spencer,et al.  STATE OF THE ART OF STRUCTURAL CONTROL , 2003 .

[29]  Michael Athans,et al.  On the adaptive control of linear systems using the open-loop-feedback-optimal approach , 1972, CDC 1972.