On type-reduction of type-2 fuzzy sets: A review

Presenting a comprehensive review on the type-reduction process of type-2 fuzzy sets.Surveying various type-2 fuzzy disciplines including fuzzy systems, fuzzy clustering, etc.Extensive comparisons among the existing approaches from different view points including computational complexity, etc. As an undetachable module of type-2 (T2) fuzzy computations and reasoning, type-reduction methods play an important role in various fuzzy disciplines including fuzzy logic systems and fuzzy clustering. Importance of type-reduction techniques lies in the fact that they are the main tools for collecting the entire inherent vagueness of the data. Therefore, type-reduction methods form the output of type-2 fuzzy sets (T2 FSs) as the representative of the entire uncertainty in a given space. Hence, their accuracy, precision, and performance speed is of much interest. This paper, presents a comprehensive review on various type-reduction and defuzzification strategies for general and interval type-2 fuzzy sets and systems. It is tried to analyze the existing approaches from different point of views accompanied by extensive comparisons on different features of type-reduction methods to facilitate further research studies by the fuzzy community.

[1]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[2]  Saeid Nahavandi,et al.  Effects of type reduction algorithms on forecasting accuracy of IT2FLS models , 2014, Appl. Soft Comput..

[3]  Francisco Chiclana,et al.  Combining the -Plane Representation with an Interval Defuzzification Method , 2011, EUSFLAT Conf..

[4]  Jerry M. Mendel,et al.  Type-2 Fuzzistics for Symmetric Interval Type-2 Fuzzy Sets: Part 1, Forward Problems , 2006, IEEE Transactions on Fuzzy Systems.

[5]  M. Melgarejo,et al.  Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[6]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[7]  Robert Ivor John,et al.  An Investigation into Alternative Methods for the Defuzzification of an Interval Type-2 Fuzzy Set , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[8]  Woei Wan Tan,et al.  Towards an efficient type-reduction method for interval type-2 fuzzy logic systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[9]  Milos Manic,et al.  Monotone Centroid Flow Algorithm for Type Reduction of General Type-2 Fuzzy Sets , 2012, IEEE Transactions on Fuzzy Systems.

[10]  Dongrui Wu,et al.  Enhanced Karnik-Mendel Algorithms for Interval Type-2 Fuzzy Sets and Systems , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[11]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[12]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[13]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[14]  Mohammad Hossein Fazel Zarandi,et al.  Computing Centroid of General Type-2 Fuzzy Sets using Constrained Switching Algorithm , 2015 .

[15]  Juan Carlos Figueroa García,et al.  An approximation method for Type reduction of an Interval Type-2 fuzzy set based on α-cuts , 2012, 2012 Federated Conference on Computer Science and Information Systems (FedCSIS).

[16]  Qihao Chen,et al.  On fuzzy-valued fuzzy reasoning , 2000, Fuzzy Sets Syst..

[17]  Robert Ivor John,et al.  Geometric Interval Type-2 Fuzzy Systems , 2005, EUSFLAT Conf..

[18]  Ibrahim Eksin,et al.  A dynamic defuzzification method for interval Type-2 Fuzzy Logic Controllers , 2011, 2011 IEEE International Conference on Mechatronics.

[19]  Oscar Castillo,et al.  Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA , 2012, Appl. Soft Comput..

[20]  Mohammad Hossein Fazel Zarandi,et al.  Hierarchical collapsing method for direct defuzzification of general type-2 fuzzy sets , 2014, Inf. Sci..

[21]  Jerry M. Mendel,et al.  Enhanced Centroid-Flow Algorithm for Computing the Centroid of General Type-2 Fuzzy Sets , 2012, IEEE Transactions on Fuzzy Systems.

[22]  Shie-Jue Lee,et al.  A Fast Method for Computing the Centroid of a Type-2 Fuzzy Set , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Patricia Melin,et al.  Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications , 2013, Appl. Soft Comput..

[24]  Hani Hagras,et al.  Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[25]  Jerry M. Mendel,et al.  Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2011, IEEE Transactions on Fuzzy Systems.

[26]  Shie-Jue Lee,et al.  An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[27]  Yau-Hwang Kuo,et al.  The Reduction of Interval Type-2 LR Fuzzy Sets , 2014, IEEE Transactions on Fuzzy Systems.

[28]  Mohammad Hossein Fazel Zarandi,et al.  A new indirect approach to the type-2 fuzzy systems modeling and design , 2013, Inf. Sci..

[29]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[30]  Dongrui Wu,et al.  Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[31]  Simon Coupland Type-2 Fuzzy Sets: Geometric Defuzzification and Type-Reduction , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[32]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik-Mendel Algorithms Used for Type-reduction in Interval Type-2 Fuzzy Logic Systems , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[33]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[34]  Hooman Tahayori,et al.  Approximated Type-2 Fuzzy Set Operations , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[35]  R. John,et al.  A novel sampling method for type-2 defuzzification , 2005 .

[36]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[37]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[38]  Oscar Castillo,et al.  A review on the applications of type-2 fuzzy logic in classification and pattern recognition , 2013, Expert Syst. Appl..

[39]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[40]  Jerry M. Mendel,et al.  New closed-form solutions for Karnik-Mendel algorithm+defuzzification of an interval type-2 fuzzy set , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[41]  Jerry M. Mendel,et al.  Comment on “Toward General Type-2 Fuzzy Logic Systems Based on zSlices” , 2012, IEEE Transactions on Fuzzy Systems.

[42]  Robert Ivor John,et al.  A Fast Geometric Method for Defuzzification of Type-2 Fuzzy Sets , 2008, IEEE Transactions on Fuzzy Systems.

[43]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[44]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[45]  Francisco Chiclana,et al.  Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set , 2013, Int. J. Approx. Reason..

[46]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[47]  Yong Qin,et al.  Fast and direct Karnik-Mendel algorithm computation for the centroid of an interval type-2 fuzzy set , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[48]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[49]  Oscar Castillo,et al.  Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review , 2012, Inf. Sci..

[50]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[51]  M. MendelJ. Type-2 Fuzzy Sets and Systems , 2007 .

[52]  Daoyuan Zhai,et al.  Enhanced centroid-flow algorithm for general type-2 fuzzy sets , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[53]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[54]  Witold Pedrycz,et al.  Design of interval type-2 fuzzy models through optimal granularity allocation , 2011, Appl. Soft Comput..

[55]  Robert Ivor John,et al.  The sampling method of defuzzification for type-2 fuzzy sets: Experimental evaluation , 2012, Inf. Sci..

[56]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[57]  M. Melgarejo,et al.  A Fast Recursive Method to Compute the Generalized Centroid of an Interval Type-2 Fuzzy Set , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[58]  Myriam Regattieri Delgado,et al.  General Type-2 Fuzzy Inference Systems: Analysis, Design and Computational Aspects , 2007, 2007 IEEE International Fuzzy Systems Conference.

[59]  Francisco Chiclana,et al.  Defuzzification of the discretised generalised type-2 fuzzy set: Experimental evaluation , 2013, Inf. Sci..

[60]  Oscar Castillo,et al.  An improved method for edge detection based on interval type-2 fuzzy logic , 2010, Expert Syst. Appl..

[61]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[62]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[63]  Ibrahim Eksin,et al.  A closed form type reduction method for piecewise linear interval type-2 fuzzy sets , 2013, Int. J. Approx. Reason..

[64]  Robert Ivor John,et al.  Type-reduction of the discretised interval type-2 fuzzy set: What happens as discretisation becomes finer? , 2011, 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ).

[65]  Miguel A. Melgarejo,et al.  A Proposal to Speed up the Computation of the Centroid of an Interval Type-2 Fuzzy Set , 2013, Adv. Fuzzy Syst..

[66]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[67]  Jerry M. Mendel,et al.  Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm , 2011, IEEE Transactions on Fuzzy Systems.

[68]  Miguel A. Melgarejo,et al.  A hardware architecture proposal for the Enhanced Karnik-Mendel algorithm based on sequential arithmetic operators , 2010, International Conference on Fuzzy Systems.