An efficient data-subspace inversion method for 2-D magnetotelluric data

There are currently three types of algorithms in use for regularized 2-D inversion of magnetotelluric (MT) data. All seek to minimize some functional which penalizes data misfit and model structure. With the most straight‐forward approach (exemplified by OCCAM), the minimization is accomplished using some variant on a linearized Gauss‐Newton approach. A second approach is to use a descent method [e.g., nonlinear conjugate gradients (NLCG)] to avoid the expense of constructing large matrices (e.g., the sensitivity matrix). Finally, approximate methods [e.g., rapid relaxation inversion (RRI)] have been developed which use cheaply computed approximations to the sensitivity matrix to search for a minimum of the penalty functional. Approximate approaches can be very fast, but in practice often fail to converge without significant expert user intervention. On the other hand, the more straightforward methods can be prohibitively expensive to use for even moderate‐size data sets. Here, we present a new and much m...

[1]  G. Egbert Tidal data inversion: interpolation and inference , 1997 .

[2]  P. Wannamaker,et al.  Three-dimensional magnetotelluric modeling using difference equations­ Theory and comparisons to integral equation solutions , 1993 .

[3]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[4]  D. Oldenburg,et al.  Generalized subspace methods for large-scale inverse problems , 1993 .

[5]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[6]  A. Orange,et al.  Magnetotelluric exploration for hydrocarbons , 1989, Proc. IEEE.

[7]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[8]  Gary D. Egbert,et al.  Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California , 2000 .

[9]  Alan G. Jones,et al.  Electrical conductivity of the continental lower crust , 1992 .

[10]  Handong Tan,et al.  Electrically Conductive Crust in Southern Tibet from INDEPTH Magnetotelluric Surveying , 1996, Science.

[11]  Yasuo Ogawa,et al.  A two-dimensional magnetotelluric inversion assuming Gaussian static shift , 1995 .

[12]  Nong Wu,et al.  Rapid Two-Dimensional Inversion of COPROD2 Data , 1993 .

[13]  Robert L. Parker,et al.  Efficient modeling of the Earth's magnetic field with harmonic splines , 1982 .

[14]  T. Uchida,et al.  Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC , 1993 .

[15]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[16]  Gary D. Egbert,et al.  High‐resolution electromagnetic imaging of the San Andreas Fault in central California , 1999 .

[17]  K. Vozoff,et al.  The Magnetotelluric Method in the Exploration of Sedimentary Basins , 1972 .

[18]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[19]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[20]  J. T. Smith,et al.  Magnetotelluric inversion for minimum structure , 1988 .

[21]  R. Parker The inverse problem of electromagnetic induction: Existence and construction of solutions based on incomplete data , 1980 .

[22]  P. Weidelt The inverse problem of geomagnetic induction , 1973 .

[23]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[24]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[25]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[26]  Douglas W. Oldenburg,et al.  Efficient inversion of magnetotelluric data in two dimensions , 1993 .

[27]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[28]  R. Parker Geophysical Inverse Theory , 1994 .

[29]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[30]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[31]  Weerachai Siripunvaraporn,et al.  An efficient data-subspace two-dimensional magnetotelluric inversion and its application to high resolution profile across the San Andreas Faults at Parkfield, California , 1999 .

[32]  Philip E. Wannamaker,et al.  Two-dimensional topographic responses in magnetotellurics modeled using finite elements , 1986 .

[33]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[34]  D. Oldenburg,et al.  Inversion of geophysical data using an approximate inverse mapping , 1991 .

[35]  Steven Constable,et al.  Occam's Inversion and the North American Central Plains Electrical Anomaly , 1993 .

[36]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[37]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[38]  Mario Martinez,et al.  Magnetotelluric observations across the Juan de Fuca Subduction System in the EMSLAB Project , 1989 .

[39]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .