On the Subexponential Time Complexity of CSP

A Constraint Satisfaction Problem (CSP) with n variables ranging over a domain of d values can be solved by brute-force in dn steps (omitting a polynomial factor). With a more careful approach, this trivial upper bound can be improved for certain natural restrictions of the CSP. In this paper we establish theoretical limits to such improvements, and draw a detailed landscape of the subexponential-time complexity of CSP. We first establish relations between the subexponential-time complexity of CSP and that of other problems, including CNF-SAT. We exploit this connection to provide tight characterizations of the subexponential-time complexity of CSP under common assumptions in complexity theory. For several natural CSP parameters, we obtain threshold functions that precisely dictate the subexponential-time complexity of CSP with respect to the parameters under consideration. Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving CSP.

[1]  Khaled M. Elbassioni,et al.  Simultaneous matchings: Hardness and approximation , 2008, J. Comput. Syst. Sci..

[2]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[4]  Toby Walsh,et al.  The Complexity of Reasoning with Global Constraints , 2007, Constraints.

[5]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[6]  Johan Kwisthout,et al.  The Necessity of Bounded Treewidth for Efficient Inference in Bayesian Networks , 2010, ECAI.

[7]  EppsteinDavid,et al.  3-coloring in time O(1.3289n) , 2005 .

[8]  Rong Ge,et al.  Provable Algorithms for Machine Learning Problems , 2013 .

[9]  Joxan Jaffar,et al.  Principles and Practice of Constraint Programming – CP’99 , 1999, Lecture Notes in Computer Science.

[10]  Igor Razgon,et al.  Complexity Analysis of Heuristic CSP Search Algorithms , 2005, CSCLP.

[11]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[12]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[13]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[14]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[15]  Ge Xia,et al.  On Parameterized Exponential Time Complexity , 2009, TAMC.

[16]  Willem Jan van Hoeve,et al.  Global Constraints , 2006, Handbook of Constraint Programming.

[17]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[18]  Toby Walsh,et al.  A Compression Algorithm for Large Arity Extensional Constraints , 2007, CP.

[19]  Francesca Rossi,et al.  Recent Advances in Constraints, 11th Annual ERCIM International Workshop on Constraint Solving and Contraint Logic Programming, CSCLP 2006, Caparica, Portugal, June 26-28, 2006, Revised Selected and Invited Papers , 2007, CSCLP.

[20]  Marko Samer,et al.  Constraint satisfaction with bounded treewidth revisited , 2010, J. Comput. Syst. Sci..

[21]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[23]  Rastislav Královič,et al.  Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings , 2006, MFCS.

[24]  Nina Narodytska,et al.  Constraint satisfaction problems: Convexity makes AllDifferent constraints tractable , 2013, Theor. Comput. Sci..

[25]  Fabrizio Grandoni,et al.  Algorithms and Constraint Programming , 2006, CP.

[26]  Yannis Dimopoulos,et al.  Propagation in CSP and SAT , 2006, CP.

[27]  Stefan Szeider,et al.  Guarantees and limits of preprocessing in constraint satisfaction and reasoning , 2014, Artif. Intell..

[28]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[29]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[30]  Ge Xia,et al.  Genus characterizes the complexity of certain graph problems: Some tight results , 2007, J. Comput. Syst. Sci..

[31]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[32]  Hachemi Bennaceur,et al.  A Comparison between SAT and CSP Techniques , 2004, Constraints.

[33]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[34]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[35]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[36]  Nicolas Beldiceanu,et al.  Global Constraint Catalog , 2005 .

[37]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[38]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[39]  Dominik Scheder,et al.  A full derandomization of schöning's k-SAT algorithm , 2010, STOC.

[40]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[41]  Jean-Charles Régin,et al.  A Global Constraint Combining a Sum Constraint and Difference Constraints , 2000, CP.

[42]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[43]  Toby Walsh,et al.  Filtering Algorithms for the NValue Constraint , 2006, Constraints.

[44]  Jean-Charles Régin,et al.  Global Constraints: A Survey , 2011 .

[45]  David Eppstein,et al.  3-Coloring in Time O(1.3289^n) , 2000, J. Algorithms.

[46]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[47]  Hubie Chen,et al.  Constraint satisfaction with succinctly specified relations , 2010, J. Comput. Syst. Sci..

[48]  Justyna Petke,et al.  Local Consistency and SAT-Solvers , 2010, CP.

[49]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[50]  Nina Narodytska,et al.  Constraint Satisfaction Problems: Convexity Makes AllDifferent Constraints Tractable , 2011, IJCAI.

[51]  Pascal Van Hentenryck,et al.  Hybrid optimization : the ten years of CPAIOR , 2011 .

[52]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[53]  Russell Impagliazzo,et al.  A duality between clause width and clause density for SAT , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[54]  Patrick Traxler The Time Complexity of Constraint Satisfaction , 2008, IWPEC.

[55]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[56]  Eyal Amir,et al.  Approximation Algorithms for Treewidth , 2010, Algorithmica.

[57]  Gustav Nordh,et al.  Blowing Holes in Various Aspects of Computational Problems, with Applications to Constraint Satisfaction , 2013, CP.

[58]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[59]  Mihalis Yannakakis,et al.  On the Complexity of Database Queries , 1999, J. Comput. Syst. Sci..

[60]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[61]  Stefan Szeider,et al.  Subexponential Time Complexity of CSP with Global Constraints , 2014, CP.

[62]  Rainer Schuler,et al.  An algorithm for the satisfiability problem of formulas in conjunctive normal form , 2005, J. Algorithms.

[63]  Christer Bäckström,et al.  All PSPACE-Complete Planning Problems Are Equal but Some Are More Equal than Others , 2011, SOCS.

[64]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[65]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[66]  François Pachet,et al.  Automatic Generation of Music Programs , 1999, CP.

[67]  Rajeev Motwani,et al.  Worst-case time bounds for coloring and satisfiability problems , 2002, J. Algorithms.

[68]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[69]  Lionel Paris,et al.  Dealing with Satisfiability and n-ary CSPs in a Logical Framework , 2012, Journal of Automated Reasoning.

[70]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[71]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[72]  Toby Walsh,et al.  Combining Symmetry Breaking with Other Constraints: Lexicographic Ordering with Sums , 2004, ISAIM.

[73]  Iyad A. Kanj,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[74]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[75]  Martin Grohe The Structure of Tractable Constraint Satisfaction Problems , 2006, MFCS.