An On-line Scheduling Heuristic with Better Worst Case Ratio than Graham's List Scheduling. Siam

case performance bounds for simple one-dimensional packing algorithms. SIAM J. A better algorithm for an ancient scheduling problem. Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. A new algorithm for on-line bin-packing. 44 43] G. Galambos and J. B. G. Frenk. A simple proof of Liang's lower bound for on-line bin packing and the extension to the parametric case. The parametric behaviour of the rst t decreasing bin-packing algorithm. 37] D. C. Fisher. Next-t packs a list and its reverse into the same number of bins. Oper. 42 12] J. Blazewicz and K. Ecker. A linear time algorithm for restricted bin packing and scheduling problems. Oper. Res. Lett., 2:80{83, 1983. 13] D. J. Brown. A lower bound for on-line one-dimensional bin-packing algorithms. analysis of an eecient algorithm for processor and storage allocation. 41 component sets (items) in the magazine can be in production. The problem is to plan the overall production process so as to minimize the number of setups. S. Khanna 77] mentions, in connection with studies of multimedia communications, that graph packing is an interesting special case. Items are edges (pairs of vertices) in a given graph G. An edge is packed in a bin if both of the vertices to which it is incident are in the bin, and so the problem is to pack the edges of G into as few bins as possible subject to the constraint that there can be at most C vertices in any bin. The approximability of this problem has yet to be studied. a dual version of the one-dimensional bin packing problem. J. Algorithms, 5:502{525, 1984. 6] B. S. Baker. A new proof for the rst-t decreasing bin-packing algorithm. A 5/4 algorithm for two-dimensional packing. A tight asymptotic bound for next-t-decreasing bin-packing. A better lower bound for on-line scheduling. 40 item is called available if all its immediate predecessors have already been packed. At each stage, the set of currently available items is sorted according to nonincreasing size, and each item is packed into the lowest indexed bin where it ts and no precedence constraint is violated. Note that, if no partial order is given, this algorithm produces the same packing as FFD. In general, however, its worst-case behavior is considerably worse. The APR is R 1 OFFD = 2; except in the strict model, where R 1 OFFD = 27 10. In this generalization, a …

[1]  Gerhard J. Woeginger,et al.  Repacking helps in bounded space on-line bind-packing , 1993, Computing.

[2]  János Csirik An on-line algorithm for variable-sized bin packing , 2004, Acta Informatica.

[3]  Joseph Y.-T. Leung,et al.  Bin packing: Maximizing the number of pieces packed , 2004, Acta Informatica.

[4]  Yossi Matias,et al.  Scheduling space-sharing for internet advertising , 2002, Journal of Scheduling.

[5]  Hans Kellerer,et al.  A 5/4 Linear Time Bin Packing Algorithm , 2000, J. Comput. Syst. Sci..

[6]  Hans Kellerer,et al.  Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..

[7]  Lap Mui Ann Chan,et al.  Worst-case analyses, linear programming and the bin-packing problem , 1998, Math. Program..

[8]  Errol L. Lloyd,et al.  Fully Dynamic Algorithms for Bin Packing: Being (Mostly) Myopic Helps , 1993, SIAM J. Comput..

[9]  Guochuan Zhang,et al.  Bounded Space On-Line Variable-Sized Bin Packing , 1997, Acta Cybern..

[10]  Errol L. Lloyd,et al.  Partially Dynamic bin Packing can be Solved Within 1 + \varepsilon in (Amortized) Polylogarithmic Time , 1997, Inf. Process. Lett..

[11]  Susanne Albers,et al.  Better bounds for online scheduling , 1997, STOC '97.

[12]  Errol L. Lloyd,et al.  A Fundamental Restriction on Fully Dynamic Maintenance of Bin Packing , 1996, Inf. Process. Lett..

[13]  C. Kenyon Best-fit bin-packing with random order , 1996, SODA '96.

[14]  André van Vliet On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.

[15]  Gerhard J. Woeginger,et al.  On-line Packing and Covering Problems , 1996, Online Algorithms.

[16]  D. Hochbaum Approximation Algorithms for NP-Hard Problems , 1996 .

[17]  M. Hofri Analysis of Algorithms: Computational Methods & Mathematical Tools , 1995 .

[18]  Gerhard J. Woeginger,et al.  On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..

[19]  Edward F. Grove Online bin packing with lookahead , 1995, SODA '95.

[20]  Gerhard J. Woeginger,et al.  New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..

[21]  D. Simchi-Levi New worst‐case results for the bin‐packing problem , 1994 .

[22]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[23]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[24]  Gerhard J. Woeginger Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..

[25]  János Csirik,et al.  The Parametric Behavior of the First-Fit Decreasing Bin Packing Algorithm , 1993, J. Algorithms.

[26]  Gerhard J. Woeginger,et al.  An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..

[27]  Weizhen Mao,et al.  Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..

[28]  J. B. G. Frenk,et al.  A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..

[29]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[30]  Barun Chandra Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..

[31]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.

[32]  Michael B. Richey,et al.  Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..

[33]  Edward G. Coffman,et al.  Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[34]  David S. Johnson,et al.  Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.

[35]  Michael A. Langston,et al.  Analysis of a Compound bin Packing Algorithm , 1991, SIAM J. Discret. Math..

[36]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[37]  János Csirik,et al.  On the worst-case performance of the NkF bin-packing heuristic , 1989, Acta Cybern..

[38]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[39]  Michael A. Langston,et al.  Online variable-sized bin packing , 1989, Discret. Appl. Math..

[40]  Richard J. Anderson,et al.  Parallel Approximation Algorithms for Bin Packing , 1988, Inf. Comput..

[41]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[42]  David C. Fisher Next-fit packs a list and its reverse into the same number of bins , 1988 .

[43]  Frank D. Murgolo Anomalous behavior in bin packing algorithms , 1988, Discret. Appl. Math..

[44]  János Csirik,et al.  Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..

[45]  Edward G. Coffman,et al.  Bin packing with divisible item sizes , 1987, J. Complex..

[46]  Frank D. Murgolo An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..

[47]  G Galambos Parametric lower bound for on-line bin-packing , 1986 .

[48]  D. K. Friesen,et al.  Variable Sized Bin Packing , 1986, SIAM J. Comput..

[49]  Charles U. Martel A linear time bin-packing algorithm , 1985 .

[50]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[51]  David S. Johnson,et al.  A 71/60 theorem for bin packing , 1985, J. Complex..

[52]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[53]  Brenda S. Baker,et al.  A New Proof for the First-Fit Decreasing Bin-Packing Algorithm , 1985, J. Algorithms.

[54]  Joseph Y.-T. Leung,et al.  On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.

[55]  Donald K. Friesen,et al.  Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..

[56]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[57]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[58]  Jr. E. G. Coffman An Introduction to Combinatorial Models of Dynamic Storage Allocation , 1983 .

[59]  J. Baewicz,et al.  A linear time algorithm for restricted bin packing and scheduling problems , 1983 .

[60]  Susan Fera. Assmann Problems in discrete applied mathematics , 1983 .

[61]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[62]  Michael A. Langston,et al.  Improved 0/1-interchange scheduling , 1982, BIT.

[63]  Michael J. Magazine,et al.  Assembly line balancing as generalized bin packing , 1982, Oper. Res. Lett..

[64]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[65]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[66]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[67]  Edward G. Coffman,et al.  A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .

[68]  David S. Johnson,et al.  Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .

[69]  Frank M. Liang A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..

[70]  Donna J. Brown,et al.  A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .

[71]  Chak-Kuen Wong,et al.  Bin Packing with Geometric Constraints in Computer Network Design , 1978, Oper. Res..

[72]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[73]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[74]  Joseph Y.-T. Leung,et al.  Combinatorial analysis of an efficient algorithm for processor and storage allocation , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[75]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[76]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[77]  Herb Schwetman,et al.  Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.

[78]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[79]  Jeffrey D. Ullman,et al.  L worst-case performance bounds for rumple one-dimensional packing algorithms siam j , 1974 .

[80]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[81]  David S. Johnson,et al.  Fast Allocation Algorithms , 1972, SWAT.

[82]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[83]  Ronald L. Graham,et al.  Bounds on multiprocessing anomalies and related packing algorithms , 1972, AFIPS '72 (Spring).

[84]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[85]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[86]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[87]  Solomon W. Golomb,et al.  On Certain Nonlinear Recurring Sequences , 1963 .

[88]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[89]  H. E. Salzer,et al.  The Approximation of Numbers as Sums of Reciprocals , 1947 .