An On-line Scheduling Heuristic with Better Worst Case Ratio than Graham's List Scheduling. Siam
暂无分享,去创建一个
[1] Gerhard J. Woeginger,et al. Repacking helps in bounded space on-line bind-packing , 1993, Computing.
[2] János Csirik. An on-line algorithm for variable-sized bin packing , 2004, Acta Informatica.
[3] Joseph Y.-T. Leung,et al. Bin packing: Maximizing the number of pieces packed , 2004, Acta Informatica.
[4] Yossi Matias,et al. Scheduling space-sharing for internet advertising , 2002, Journal of Scheduling.
[5] Hans Kellerer,et al. A 5/4 Linear Time Bin Packing Algorithm , 2000, J. Comput. Syst. Sci..
[6] Hans Kellerer,et al. Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..
[7] Lap Mui Ann Chan,et al. Worst-case analyses, linear programming and the bin-packing problem , 1998, Math. Program..
[8] Errol L. Lloyd,et al. Fully Dynamic Algorithms for Bin Packing: Being (Mostly) Myopic Helps , 1993, SIAM J. Comput..
[9] Guochuan Zhang,et al. Bounded Space On-Line Variable-Sized Bin Packing , 1997, Acta Cybern..
[10] Errol L. Lloyd,et al. Partially Dynamic bin Packing can be Solved Within 1 + \varepsilon in (Amortized) Polylogarithmic Time , 1997, Inf. Process. Lett..
[11] Susanne Albers,et al. Better bounds for online scheduling , 1997, STOC '97.
[12] Errol L. Lloyd,et al. A Fundamental Restriction on Fully Dynamic Maintenance of Bin Packing , 1996, Inf. Process. Lett..
[13] C. Kenyon. Best-fit bin-packing with random order , 1996, SODA '96.
[14] André van Vliet. On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.
[15] Gerhard J. Woeginger,et al. On-line Packing and Covering Problems , 1996, Online Algorithms.
[16] D. Hochbaum. Approximation Algorithms for NP-Hard Problems , 1996 .
[17] M. Hofri. Analysis of Algorithms: Computational Methods & Mathematical Tools , 1995 .
[18] Gerhard J. Woeginger,et al. On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..
[19] Edward F. Grove. Online bin packing with lookahead , 1995, SODA '95.
[20] Gerhard J. Woeginger,et al. New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..
[21] D. Simchi-Levi. New worst‐case results for the bin‐packing problem , 1994 .
[22] Yuval Rabani,et al. A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..
[23] David R. Karger,et al. A better algorithm for an ancient scheduling problem , 1994, SODA '94.
[24] Gerhard J. Woeginger. Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..
[25] János Csirik,et al. The Parametric Behavior of the First-Fit Decreasing Bin Packing Algorithm , 1993, J. Algorithms.
[26] Gerhard J. Woeginger,et al. An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..
[27] Weizhen Mao,et al. Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..
[28] J. B. G. Frenk,et al. A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..
[29] André van Vliet,et al. An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..
[30] Barun Chandra. Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..
[31] Amos Fiat,et al. New algorithms for an ancient scheduling problem , 1992, STOC '92.
[32] Michael B. Richey,et al. Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..
[33] Edward G. Coffman,et al. Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[34] David S. Johnson,et al. Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.
[35] Michael A. Langston,et al. Analysis of a Compound bin Packing Algorithm , 1991, SIAM J. Discret. Math..
[36] György Turán,et al. On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..
[37] János Csirik,et al. On the worst-case performance of the NkF bin-packing heuristic , 1989, Acta Cybern..
[38] D. T. Lee,et al. On-Line Bin Packing in Linear Time , 1989, J. Algorithms.
[39] Michael A. Langston,et al. Online variable-sized bin packing , 1989, Discret. Appl. Math..
[40] Richard J. Anderson,et al. Parallel Approximation Algorithms for Bin Packing , 1988, Inf. Comput..
[41] Eugene L. Lawler,et al. Sequencing and scheduling: algorithms and complexity , 1989 .
[42] David C. Fisher. Next-fit packs a list and its reverse into the same number of bins , 1988 .
[43] Frank D. Murgolo. Anomalous behavior in bin packing algorithms , 1988, Discret. Appl. Math..
[44] János Csirik,et al. Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..
[45] Edward G. Coffman,et al. Bin packing with divisible item sizes , 1987, J. Complex..
[46] Frank D. Murgolo. An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..
[47] G Galambos. Parametric lower bound for on-line bin-packing , 1986 .
[48] D. K. Friesen,et al. Variable Sized Bin Packing , 1986, SIAM J. Comput..
[49] Charles U. Martel. A linear time bin-packing algorithm , 1985 .
[50] David B. Shmoys,et al. Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[51] David S. Johnson,et al. A 71/60 theorem for bin packing , 1985, J. Complex..
[52] D. T. Lee,et al. A simple on-line bin-packing algorithm , 1985, JACM.
[53] Brenda S. Baker,et al. A New Proof for the First-Fit Decreasing Bin-Packing Algorithm , 1985, J. Algorithms.
[54] Joseph Y.-T. Leung,et al. On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.
[55] Donald K. Friesen,et al. Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..
[56] David S. Johnson,et al. Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .
[57] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[58] Jr. E. G. Coffman. An Introduction to Combinatorial Models of Dynamic Storage Allocation , 1983 .
[59] J. Baewicz,et al. A linear time algorithm for restricted bin packing and scheduling problems , 1983 .
[60] Susan Fera. Assmann. Problems in discrete applied mathematics , 1983 .
[61] Richard M. Karp,et al. An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[62] Michael A. Langston,et al. Improved 0/1-interchange scheduling , 1982, BIT.
[63] Michael J. Magazine,et al. Assembly line balancing as generalized bin packing , 1982, Oper. Res. Lett..
[64] David S. Johnson,et al. The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.
[65] G. S. Lueker,et al. Bin packing can be solved within 1 + ε in linear time , 1981 .
[66] Brenda S. Baker,et al. A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.
[67] Edward G. Coffman,et al. A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .
[68] David S. Johnson,et al. Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .
[69] Frank M. Liang. A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..
[70] Donna J. Brown,et al. A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .
[71] Chak-Kuen Wong,et al. Bin Packing with Geometric Constraints in Computer Network Design , 1978, Oper. Res..
[72] Edward G. Coffman,et al. An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..
[73] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[74] Joseph Y.-T. Leung,et al. Combinatorial analysis of an efficient algorithm for processor and storage allocation , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[75] Andrew Chi-Chih Yao,et al. Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.
[76] Sartaj Sahni,et al. Algorithms for Scheduling Independent Tasks , 1976, J. ACM.
[77] Herb Schwetman,et al. Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.
[78] David S. Johnson,et al. Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..
[79] Jeffrey D. Ullman,et al. L worst-case performance bounds for rumple one-dimensional packing algorithms siam j , 1974 .
[80] David S. Johnson,et al. Near-optimal bin packing algorithms , 1973 .
[81] David S. Johnson,et al. Fast Allocation Algorithms , 1972, SWAT.
[82] Jeffrey D. Ullman,et al. Worst-case analysis of memory allocation algorithms , 1972, STOC.
[83] Ronald L. Graham,et al. Bounds on multiprocessing anomalies and related packing algorithms , 1972, AFIPS '72 (Spring).
[84] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[85] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .
[86] Ralph E. Gomory,et al. A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .
[87] Solomon W. Golomb,et al. On Certain Nonlinear Recurring Sequences , 1963 .
[88] R. Gomory,et al. A Linear Programming Approach to the Cutting-Stock Problem , 1961 .
[89] H. E. Salzer,et al. The Approximation of Numbers as Sums of Reciprocals , 1947 .