Decentralized coherent quantum control design for translation invariant linear quantum stochastic networks with direct coupling

This paper is concerned with coherent quantum control design for translation invariant networks of identical quantum stochastic systems subjected to external quantum noise. The network is modelled as an open quantum harmonic oscillator and is governed by a set of linear quantum stochastic differential equations. The dynamic variables of this quantum plant satisfy the canonical commutation relations. Similar large-scale systems can be found, for example, in quantum metamaterials and optical lattices. The problem under consideration is to design a stabilizing decentralized coherent quantum controller in the form of another translation invariant quantum system, directly coupled to the plant, so as to minimize a weighted mean square functional of the dynamic variables of the interconnected networks. We consider this problem in the thermodynamic limit of infinite network size and present first-order necessary conditions for optimality of the controller.

[1]  Matthew R. James,et al.  Quantum Dissipative Systems and Feedback Control Design by Interconnection , 2007, IEEE Transactions on Automatic Control.

[2]  Alexandre M. Zagoskin,et al.  Superconducting quantum metamaterials in 3D: possible realizations , 2012 .

[3]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[4]  Ian R. Petersen,et al.  Parameterization of stabilizing linear coherent quantum controllers , 2015, 2015 10th Asian Control Conference (ASCC).

[5]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[6]  Matthew R. James,et al.  Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[7]  Joseph Edward Wall,et al.  Control and estimation for large-scale systems having spatial symmetry , 1978 .

[8]  Bassam Bamieh,et al.  Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback , 2011, IEEE Transactions on Automatic Control.

[9]  Nikolay I. Zheludev,et al.  A Roadmap for Metamaterials , 2011 .

[10]  Masaya Notomi,et al.  Large-scale arrays of ultrahigh-Q coupled nanocavities , 2008 .

[11]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[12]  Ian R. Petersen,et al.  Covariance dynamics and entanglement in translation invariant linear quantum stochastic networks , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[13]  Andrew D Greentree,et al.  Reconfigurable quantum metamaterials. , 2010, Optics express.

[14]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[15]  Ian R. Petersen,et al.  A quasi-separation principle and Newton-like scheme for coherent quantum LQG control , 2010, Syst. Control. Lett..

[16]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[17]  K. R. Parthasarathy,et al.  WHAT IS A GAUSSIAN STATE , 2010 .

[18]  Alexandre M. Zagoskin,et al.  Quantum engineering , 2022, Physics Subject Headings (PhySH).

[19]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[20]  Ian R. Petersen,et al.  Robust mean square stability of open quantum stochastic systems with Hamiltonian perturbations in a Weyl quantization form , 2014, 2014 4th Australian Control Conference (AUCC).

[21]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[22]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in Josephson qubit lines , 2009 .

[23]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[24]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[25]  Ian R. Petersen,et al.  Physical Realizability and Mean Square Performance of Translation Invariant Networks of Interacting Linear Quantum Stochastic Systems , 2014, ArXiv.